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ABSTRACT

This report relates to the vibration of aeroplane structures excited
by jet-noise or other random pressures. A review is made of those aspects
of vibration and transmitted noise which may be alleviated by increasing the
structural damping. The damping of conventional untreated structures is then
considered, measured values of the damping of model and full-scale structures
being discussed in the light of previous studies (by the author) of acoustic
and rivet damping.

The common practice of judging a damping treatment by the loss factor
increment it produces is then shown to be inadequate for contemporary
treatments and thin-plate structures. Alternative "criteria" are therefore
derived which describe more adequately the effectiveness of the treatment in
attenuating certain random and harmonic vibration phenomena. These have been

used to compare two commercial unconstraincd treatments and to estimate
the reduction of random stresses in an aeroplane structure whem the treatments
are added.

The response of a two-dimensional flat sandwich plate with a damped
core has next been analysed. The dependence of the modal loss factor,
stiffness and criteria values on the wavelength and core properties has been
stuadl-ad. Optimum core thicknesses and core properties have been fcund which
minimise the response. Random stresses in a structure with thick-cored
sandwich plating have been estimated to be not less than 10% of those in a
solid-plate structure of equal weight.

Harmonic experiments on small sandwich specimens have confirmed the
theory for the loss factor and stiffness. The special apparatus and techniques
of measurement developed for the experiment have been used to assess three
commercial sandwich specimens.

A new approach has been initiated to estimate the random response of
a very heavily damped Vistem. Its validity has been confirmed for simple
random excitation conditions by experiments on the sandwich specimens.

9{
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Introduction

1.1 The Context of. the Problem

z The modern high speed aeroplane is generally known as a prolific
source of disturbing noise. On The ground, its jet engines pioduce noise
levels which have been quoted as 14gh •.l10 db*. At high speeds, the flow
of air over the vehicle is in a turbulent state, generating sound and
exerting on the aeroplane surface hydrodynamic pressures of up to 145 db
at M = 1.5. Whether stationary on the ground or flying fast through the
air, the structure is therefore subjected to intense randomly fluctuating
pressure. Since the structure is relatively light and flexible, it [
responds readily to these pressures. In consequence, noise is transmitted
through the walls, inducing passenger discomfort end fatigue, and randomly
varying stresses are generated within the structure, leading to metal
fatigue.

A reduction of the transmitted noise or of the fluctuating stresses
can be achieved by varying the three basic structural parameters, mass,
stiffness and damping. Increasing the mass is the well-known method of
&creasing t-.ansmitted noise, but for obvious reasons is no acceptable
solution. Increasing the stiffness, although reducing the stresses in
some Darts of the structure, has been found in practice sometimes to
increase them elsewhere. Furthermore, the extent to which the stiffness
6a be increased is limited by the amount of extra weight that may be
parmitted. Increasing the damping can ': shown to be beneficial to the

j stresres in all cases, and under some conditions also to the transmitted
sound.

Until recent years, the damping was not considered to be a
variable, but with developments in damping treatments, large increases
ol' damping have become possible with relatively little or no increase in
weight. Contemporary treatments involve adding a layer of visco-elastic
mater'al (usually a high-polymer) to the plates and beams of -the structure.
As the rbructure vibrates, the material undergoes fluctuating strains,
dissipates enetgy and damps the motion. Recent developments have led to
the manufacture of materials having greater damping capacities than
hitherloo, which are retained over broad ranges of temperature and frequency.
Further increases of damping efficiency have resulted from developments

ia the techniques of using the materials, notably ini the method' of
constraining the layer to distort in shear, instead of distorting only
in flexure, as previously.

The purpose of this report :"Ls to conduct investigation into the
benefits which might accrue by usizg certain damping treatments in
aeroplane structures subjected to noise excitation. It must first be
proved that increasing the damping is, in fact, beneficial. This is so,
of course, provided the random response of the structure is' predominantly
resonant. To establish this, and also to give insight into the problems
of the investigation, we shall firstly disduss the nature of the stricturesI and their modes of free vibration, the nature of the excitatibn fields and
also of the corresponding structural response.

-2"*Noise levels quoted are in db's, referred to .0002 dynes cm
i e. db's :20 lo- Pr /.0002
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1.2 The Nature of the Structure and 1ts Modes of Natural Vibration

A typical fuselage strueture consists of a thin cylindrical shell
rei forced longitudinally by stringers and circumferentially by frames. Typical -

spacings may be -4 - 10 in. between the stringers and 6 - 18 in. between the
frames. The-stringers may have an open or closed section and are riveted or
bonded to the skin. Frames are usually of open section and are riveted to
the skin. The stringers are continuous through the frames, being joined to
the frames at, the intersectlons by cleats which add torsional stability to the
stringers. The modes of vibration which are significant in noise transmission
and acoustic fatigue may, for convenience, be classified as long wavelength
(or 'overall') modes, and short wavelength (or 'local') modes. (The classification
is based essentially on the methods and restrictions used to calculate the modal
frequencies, rather than on essential differences in the nature of the modes).

The overall modes involve distortion of the whole cross-section and
length. The distortion is periodic around the circumference and along the
length. The frames, stringers and skin all take part in the distortion, a
typical mode of which is shown in Figure 1. Longitudinal half-wavelengths may
occupy several frame spacings. The frequencies of modes of this type have
been analysed by P.R. killer (1), and some typical values are shown in
Figure 2.

The local modes have longitudinal half-wavelengths equal to the frame
spacing, nodal lines existing at each frame station. The radial displacements
around the circumference of the four simplest modes of this type are shown in
Figure 3, where a cylinder of infinite radius is shown for simplicity. Lira (2)
has discussed and analysed these local modes. it will be noticed that the
stringer displacement in any mode is either flexural or torsional, Lin's work
having shown (rather dubiously) that for this class of mode flexural and
torsional displacements of any one strirger do not occur simdltaneously.
For the Caravelle fuselage, the natural frequencies of modes A and C of
Figure 3 are approximately 700 cps and 1000 cps respectively.

An intermediate class of mode exists with nodal lines at the frames
and with circumferential half-wavelengths ireater than the stringer spacing.
Flexural and torsional displacements now occur, simultaneously on one strir :er.
Ford (3) has shown that the frequencies of these modes lie between the frequencies
of modes A and C of Figure 3.

It is clear that these free modes of vibration and their natural
frequencies depend on a large number of stiuctural variables, Viz. the skin
1 th~cness, the frame and stringer spacings, the stringer flexural and torsional
stiffnesses and shear centre location, the frame flexural stiffness, the cylinder
radius and effective length. The hidgher order modes will be influenced
considerably by "secondary" variables such as rivet stiffness, .leat stiffness
and cross-sectional stiffness of the stringers and frames.

The structure of a tail-plane or elevator consists of v. thin skin
covering reinforced in the spanwise direction by stringers, and in the, chord-
wise direction by thin plate ribs which join the top and b6ttom srfaces. The
modes of vibration which are significant in acoustic fatigue (4)are of.the

2



f-form shown in Figure 4, where the section is spanwise along the structure.
In the chordwise direction the modes of displacements will be similsar to these
of Figure ý. The stiffness of the rib relative to the stiffness of the surfate
skins is obviously one of the most important parameters governing these
modes of vibration, typical frequencies of which are shown on the figure.I An elevator' structure is basically similar to that of the tailplane,.
bt;bt there will be only one or two spanwise stringers. On the Caravelle
tailplane (with one stringer) the 18 S.W.G. skin panels were approximately

rectangular, having sides of 5 to 9 in. Their me~sured natural frequencies
_were in the region of 230 to 340 cps.

1.3 The Nature of the Excitation

-. 3.1 Jet Noise

The pressure fluctuations generated by a jet ar, essentially random
in character, deriving from a rand--m array of moving random sources. These
sources originate in the turbulence in the jet as it enters and mixes with
the surrounding air. Associated with the turbulence are both hydrodynamic
and acoustic pressure fluctuations, the former being predominant in the
region of the jet itself and near the jet boundary, and the latter predominating
in regions far from the jet (say, seven diameters and more away from it),
In the intermediate region the effects of each are comparable.

The randomness of the pressure is such that its continuous frequency.
spectrum may have appreciable components at frequencies as far apart as
50 and 5000 cps, although the really damaging intensities only occur between
100 and 1000 cps. Typical spectra measured at two points near an Avon jet
engine (5) are shown in Figure 5. These show the general feature that the
peak in the spectrum is quite broad and moves to lower frequencies as the
distance from thejet increases.

The sources of the high frequency components are strongest near the
jet-orifice, whereas those of the low frequencies are strongest further
downstream in the 'mixing region' of the jet. The nature of the acoustic
sources is such that the radiater, sound is quite strongly directional.
The maximum total noise is radiated out from the jet along lines at
approximately 350 to the jet axis. The maximum high frequency radiation is
along lines inclined at larger angles than this. On account of this
directionality only limited regions of the whole aeroplane structure are
prone to acoustic fatigue.

The response of the structure to these pressure fluctuations 8esends
not only upon the pressure spectra, but also upon the spatial correlation of
tthe pressure over the surface of the utructrre. One mode of vibration can
be excited to a much greater extent than anothei simply due to the nature
of the variation of the correlation coefficient in space compared with the
modal displacement .pattern. The actual forms of the correlation spatial

-- distribution will not be discussed here, but the -reader is referred to the
work of Callaghafi, Howes and Coles (6) for jet engine correlation measurements.
(Clarkson (4) also gives a summary account of correlation measurements.
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1.3.2 Boundary Layer Press,_mre Ftuations

The normal pressure fluctuations on a surface adjacent to the
boundary layer of a high speed flow originate in the hydrodynamic pressure
associated with the turbulent velocity fluctuations. The turbulence ray be
regarded as eddies being convected downstream at a mean speed of about 0.8
times the free stream velocity. As in the jet boundar7, these eddies build
up to a maximum and then decay as others are formed, and are larger in the
thicker boundary layers.

The root mean square value of the normal pressure fluctuations exerted
on an aeroplane surface has been found to be approximately 0.6% of the free
stream dynamic pressure up to a Maich No. of about 1.2, and is virtually
independent of the boundary layer thickness (7). The rean square pressures at
the front and rear of an aeroplane fuselage are therefore approximately
equal. In db's, the empirical pressure level is

4-0 Io3 Ue-A + 105 db.
t0o

i.e. 143 db at 600 mph and at sea level.

This is not so damaging to the structure as jet noise of the same
overall intensity, as the spectrum tends to be flat from low frequencies up
to a certain Ncut-.1off frequency', given by

0.2 x Free stre-am velocityBoundary layer displacement thickness

Beyond this frequency, the spectral level falls off quite steeply. At the
rear end of a large aeroplane flying at 600 mph the boundary layer thickiess
may be 6 in. (the displacement thickness is about 1/10 of this), giving a c'it..
off frequency of about 7000 cps, rising to 42,000 cps upstream where the
thickness is only 1 in. -Uhrer these two conditions pressure spectra such as
those of Figure 6 are obtained.

Space correlation measurements in full-scale boundary layir pressure
fields have not yet been made. Laboratory measurements suggest that a Crve-
of a non-dimensional narrow band space correlation codfficieut may be construated,
from which may be obtained (,he correlation coefficient in any frequency band,
and at any speed and separat )n in the streamwise direction. Some mwsurements
have been summarlsed and dijcussed by Bull(7).

1.4 The Nature of theResoonse of the Structure

A system subjected to randomly varying pressore will respor4 in a
random anner. Although the random pressure may have a flat power specum
the response apectrum z!y be 'peaky', having been modified by the reeppranCe
of the system. The peaks in the spectrum occur at the natural frequencies
of the svstem, and the height of each is propoftional to the su 'irf ithe
damping of the c6rrespondin& natural mode. Vow the total mean square response
is proportional to the area under the whole response power splctilm. If the
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peaks are large,. the area under them will form the major- part of-the total
mean square responsej, which may then be described as lpredominantly resonant'.
It is then critically dependent on the damping of the modes.

It will now be- shown that, some of the responses of thca structures of
-Para. 1.2 are indeed predominantly resonant,, and may therefore bi attenuated
by increasing the damping. By '"rdsponses!' are impli3d .=^-h quantities as theý
fluctuating stress in the structure, the sound levels -transmitted, though Nhe
structure and acceleratiofis at points on the structire, etc... etc.

That structural stresses have the resonant charadctet has been. shown
conclusively by Clarkson and Fo~rd (8) in their experimental analyses of
jet-excited fuselage andi tai~lpane vibrations. Figure 7 and'S show typical
spectra of stresses measured at the centres of a fuselage and tailplane

mael respectively. The primary peakc of Figure 7 has been showntobdu c
the excitation of the stringer torsion mode of Figure-3 in the neighbbur.hood
of its natural frequency. The area under the spectralI curve 3m -the viciaity
of the peak Porms-alarge proportion off the total area under the curve,
and the stress is therefore predcumIzantly resonant. The peak in the tailp-laneJ
~stress spectrum (Figure 9) raows ýan even titronger -resonant effect, the mode
of vibration having been identified as that of Figure A. Similar strongly
resonant spectra have been obtained from measurements on cilevator panels,
tailplane ribs and stringers,. and fuselage frames. Ahll eraphasise the
predominance of the resonant portions in the total speztra.

Another significant feature of Figures 7 and -S is that the-response
derives primarily from the excitation of a very fev modes. Ahlthough thi JiS not

alay he case,. it does have an Important bearing on the pibblem of designn
the most effective type of damping treatment,. Ifpr some treatments -give1 their

exIinm- benefit in -certain- frequency and wavelength rangEes.
Convincing experimental evidence is- no e tcMing that ranismittad

boundaijý 34-r lhiole is predominantly Tesonant. _oEvr th ieuts -of -
several -independent theo-etical investigations (9bD 1 ave shoiwni thiat, --inder.
.11 conditions the transmitted noise has pronouncedd pedks -in itp sjpectru at
the resonant frequencies ofi -the- jýate structures considered.- S2is, in itself.
does not indicate 'that -the total mean square hoise is -piedonvinanty resonant%
(see Chapter II parda 3.4-2), but unrder the so-coiled 'Ocoincidenee' transmission
conditioins whiebchian occurl at high speeds, the peaks are Ifuther m'agnified
relative to the non-zresonant portions of the spectr' and the peaks then
dominiEtA the spectruml.

UGoincidencel conditions obtain whenever thb convection velocity of
-- the toundary layer 1=esture fluctuations coinclIdes -with -the phase velocity.

of a freei f le.ural Vwe in- the -skin1 plating4  L.larg0__peak then- exists-In -the-Z
spectrum of the. generalised- force correspondingý t.o that mo~de atbte mzdal
natural frequency. Thes vibration amplitude and -tL-. sound~xadii~ated b~v the
plate, in that mode are corresponnl magnife. Ii h~lto is (silily)
suppor-tsd _I% frme hich are 7 In. apart and -has a -T aueitJ n~atural
frequez-y ofCW) e5PS, the -lowest neessary conv-ection.-'elictity- is.,only

* ~~in quit,6 slov aeroplanes, 6lt iag the transmtted nielylsvle
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1.5 D92e romoied DNmoizi 7reat-nnt

Having established that under some conditious thie responses of the-
structure are resonant, and that increasing the damping mast-therefore be-benficalwe now discuss the particular treatments ishich can b osdrd
As stated already., these involve adiing to the structural surface a layer of
material having a high dimpiuk' capacity.' Structural vibration Imposes- fluctuating
strains upon the layer which dissipates energy and damps -the-vibration.
Treatments may bei classified as lunconstrained. layers' or an~ *constrained
layers*.

An unconstrained layer is initially s~rrayed or trowelled on to-the
vibrating member in a wet state and is left with one free, or 'uniconstraine&'0
surface. On drying cut, it becomes quite stiff and when the member bends,'
the layer undergoes direct bending strain (see Figure 9aL) and so dissipatesene~rgy. As stiff materials are required -for maximum damping, 'developrdents
for this purpose have led to the use or soft resins (PVC, PYA etc) which
have been stiffened by vermiculite or china-clay fillers. The complex -Young's Modulus of one such matetial (Aquaplas) is about .100(1. i I. 035)lb-in._I at about 200 cps. When aoplied to an aliminium plat6 tzo a thickness equal to
that of the plate, a flexural damping ratio of about-0.12 is obtained

(aeotual damping of a flexural moda + cr~itical damping).

A conatrained layer consists of a da-mping material sandMiched between
two plates. As the plates bend,, the layer is constrained to undergo shlear
strain, by virtue of -4hich enrrgy, is dissipated. The 'double-skinm configumation,
consists ~if outer skins of equal Ithickness, the interfacial damping layer ,being
anything f mom 'very thin' to three times the plate thickness, This configuration
mist be pro-fabricated and built into the- structure, ab initio. OSoundj ~damping tape3 , on the oth~er hand., may be applied to an existing plate strueture
simply by pressing it on. It .consists of a thin, pressure-senisitive,, high
damping adhesive layer backed by a thin metal foil. It is- used extensively
in certain airliners for sound insulation.

The essential shearing mechanic6 of the constrained layer is
illust ratead in Figures 9band 9c. For most practical applications a soft
material Us required for a constrained layer, but there is an optimum layer
stiffness for maximum damping.

The advantage possessed by- unconstrainzd layer treatments is. that, they
may readily be used as an-.emergency measure on existing striuetmres..Te ~
be applied not only to plates but also to stringers and frumes -to damn their
flexural motion. Their dizadvantajp. is that they are usually Vygraciscopic .and
the moisture abaeorbed may prompte coriosion fatigue on the light "al7loy
surfaces. The layers are not readily removable for fatigad inspectiloa, and
once removed cannot be used again. Constrained -layers shown promise of
providing much higher damping than unconstj~ainad layers, (flexaral damping
ratios of 0.50 have. been measured) and do not zu~ffer from. moistur-e
absorption as the constraining foil, or ulate is impermeable. Damping tape
is readily, removable for inspe-ction purposes,- and afterwards may, be replaced,
but it- may only- be iised for damping i~at flexural motion. The- double-skin
configuration- is similarly restricted and. should requite no internal insirection..

UtS prime requrement is fora~etee~srn bond betw~een pla~tes and-inter-
- - face. This is met admirably by the 2*1cadamp7 sandwich plati which-'has recently

been marketed. The main problem associated with its use is in the atitachments
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s to the reinforcing and stiffening structure. Riveting restricts the essential
shearing displacements between- the two plates, and so reduces the- damping,
effectiveness. Greep of the damping layer under the compressivie stres's induced by

->the rivet may cause the rivet to loosen, in time., However, It is claimed that
Hycadamp may be banded to reinforcing members., and with suitable production
techniques the abo-we two objections iihotild be over-ruled.

It is important to recognise that the addition-of a damping layrer to -

A ~a plate may change the plate flexurel stiffness very considerably. A layer -

of AquapJ.&s on an aluminium plate, doublea the stiffness whent the Aquaplas weight
io one half of the plate weight. On the other-band,, the stiffness of a
sandwich plate with a thin sft layer may be only one quarter of that of a solid -

plate of equal weight. If the layer is thick andstiff, the stiffness of- the
plate may be several times greater than that of the solid platfe.

Reference has been made to the complex Young's Modulus of Aqunplas. It
is usual to represent the dynamic (harmonic) moduli. of l-inear damnping materials
in this form with the notation,-

Youn's modlus, nE~ E'(i ) E' 4- L E

and~

Modulus of Rigidity mG* =G(1 -x G' +

-E' andý GI are known as the "storage moduli', EM and C'I as the 'loss moduli',
and' and jS as the 'loss factorsa.

Bach of the terms V I G'I anid P are frequency dependent', varying
Iii the -forms of which figures 1~and 21. arre typical. The use of the comle

stiffness does not- therefore imply that the ener&' dissipated per gkven- straini
cycls (v~hch is proportional to V' or dw). is the oame for all frequen cies.

It wil be noticed in figureslO andnUthat the =adi== loss factors
occur at frequencies at which the storage modulus is -Varying most rapidly
with respect to frequency. This is an inevitable characteristic which 'stems
from the moleculear relaxation metchaisms at the-root of the vis'co-e~lastic
behaviour. The frequency at which the maximum loss factors icchr can be
adjusted L,, saitabl2y mixing. and compounding differenit- materials. Most
mateaials developed' for damping treatments have this Peak between.10 ifOps
and 3.000, cpsp, which is in the saiie. region asý the peaks, in jet-n~ise, spectra.
The- breadth of' the peaks can _be adjusted in1 the Sime way . Iii. general, ho-weverp
btoadening- the. peak :reduces the miximutm loss factor bixt-also reduces the
rate of chang e with f r equency of the storage- m~odlu.

The general effeci of Increasing the temperature'- of the material is to
move its, ci s of stoag moduli adlsfctrtohigher frequencies,
without changing the, maximum and minirum values. Decirea'sing thile tiýezprtx
moves the -curves to lower freq'uencies. As %~y -therfr be eixpeted,' the
mateiials-with the flattest cuxves of-. ti~ Ic-tr -vs. frequ'ny also slom
the-16ast variatlion1. of oss' faictor and Wtrg~mdruIS wt te*peratbr
changes.- katerils'- desig~zd- to- 'hive iia od 'itemperaur bai&iddth' heefr

havein loe d-oh poefties'- than nari~robcndwdth Juate1:arial. Sinýce-
Saeroplah6e stditrei haet 'at ewejard-rrme ftmeatue
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tha desirability of h~road temperatare-band materials is obvious.VIf the temperature changes are too great., the physical nature of the
polymer. may chanige. e.g. dropping the temperature will even~tual change itfrom
an amorphous to a crystalline materlalo The simple lateral tianslation of

the curves is then no longer applicable.
1.6 The Problems of the Pr-esent lInregstigatijon

* ~The stated purpose of this report is to investigate the bemefits
IA ~accomnpany'ing thie use of c-ertaini damping treatmentso Particular attention

wil be given to the use of Arasplas and the double-sk~tn damping configuration,
with particular zeference to their effects on structural stresses. Only
limited referenc' will. be rTiade to the effects on scur~iL transmissions. It
is further required to detexmine whether certain lopti=u configurations"
excist which will minimize the respon'se, "optimum configuration" implying either
an optimum thickness or stiffness of the damping- material.

The fundamental problem involved is firstly to determine the response
of a multi-freedom stiffened structure -to the rendom exceitatio~n,, and then to
determine the dependence of this response on thle stifffness's mass and damping

case)-. The damping of the plating, moreover, may be very heavy, introducing
problems into the analysis which lhia-vc' not hithextk been significant.

A geeral theory for calcixi at"rig tbii random riisr,4=19 has been presented
byPowell (12) Heare, the response Is. tnaly~s~d in 'terms of the normal modes of
vibration. of the structure, which must tILn-if'tze 1x- detutntined at the outset.
The generilised response in each mode is tham obtained in terms -of thej
corresponding generilised forces7, stiffnesses, masses tond damping cdefficit-' -

Consider now the problem of examiming the effect. on the wisponse of
systematically changing., say, the thickness or dynamic propwrtiew of a- damping --

layer on (or in) the -skin plating. When this change is iwde, tile stiffness
and- mass of the whole plate are changed. Thi* in turn., mhanges the modes
of vibration and the co-responding coefficients of stiffcss,' mass and
damping, These coefficients depend in a very complicate4 -,i.ry upon the
individual stiffnesses and dimensions of, the stringers-, fia,=as qind ski~n-
plating. To calculate -the total response of one specific stuttur~e is a
formidable enough computation. To calculate it for a glivear svib-structure of
stringers and frames, but for a range of different damped skin platings is
more formidable still. To proceed to investiga~te the' effects 6f different
stringers and frames is out' of the question at the present time.

On account of these difficulties, the approadh of this repr is to
- ~consider, the damped plate alone, responding in r single- mode to a simple

randomn pressure Zield. I-us r.m.s. response mut 1-WoudI trs c
-generalised coefficients, 'which vary with tlbe different damiping treatments

-4ind~-6ohfigurations. The response will be compared with, that of a plain,
plateý -(i.e. with no d E~ping treatment)' which, has a mbal damping ratio ecp=al
-to that of a -typical, real,. untreated stru;:ture. The effect 6f' reolacing- this'
plain plate by the damped plate Pa~y then be, expressed- as 4 'perente reduction
of rim.s. displacement-, stress, transmi:tted noise, etc.

In representing the skirt plating of the real structurwe by -this simnie
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plate, an idealisation of no mean oider is introduced. 7he approach~mey.be
expected to yeild estima~tes of reductions which..are approximately correct.
provided that in the significant modes of the real structure the tIW.pt ener
is much greater than the energy of the stringers and frame. Wheth or not
this is satisfied, it can be stated categorically that the reductions found
in the simplified approach must be greater thin those at f achie&ed. The
reductions found for an optimum configuration of the simplified model will
therefore be the greatest possible. They will set an 'uper bound'to- the
effectiveness of the treatment, beyond which no further improvement may -,be
obtained.

of For the comparison mentioned above, some typical values are required
of the damping ratios of the significant modes of vibrition of untreated
structures. The sorces and nature of this *initial damping" are considered
in Chapter II. Soma mamtred and calculated values are also discussed.

In former investigations into the d&mping of-plates, the
effectiveness of a -damping treatment has a2.ways been assessed by the
magnitvde of the flexural loss factor it produces. (The flexural loss
factor is equal to 2 x the damping ratio of a flexural mode). It has been
assumed, in effect, that an increase of flemural loss factor means-a
corresponding reduction in response. Now the responses of randomly excited
plates, or of plates excited randomly at resonance, depend not only upon the
loss factor but also upon 'the plate mass and stiffness. Since these latter
quantities vary as -the dtaing treatment is changed, it is: possil'e for thechanging stiffness (say) to reduce o reinforce the effect of the cain
loss factor. The value of the loss factor alone is then no longer a -
sufficient criterion by which to Judge the treatment effectiveness.

On the basis of the "simplified plate anproach* to the response
calculation, it is possible to derive a new set of criteria for assessing
the effectiveness of the damped ulaze. These take into account the loss factor
and a non-dimensional "stiffness ratio" and "mass ratio°. Differen'tI.
criteria are required in relation to different response quantities (plate
surface stress, plate inertia forces, sound transmitted, etc.) and to random
and harmonic excitation. They are developed in Chapter III.

These new criteria are used in Chapter IV to compare the effectiveness
'A of two siiilar unconstrained layer treatments on a given plate. (The theory

of the damping and stiffness of the treated plate is also given in this
chapter).

"The. probler c -1-signing a damped sandwich plate is'to determine, for
a given weight or ti'ffes -or- pate,•the 4a ;ping rial and, the
optimum-plate and dampin laycir .•tcknesses- to minirise thq response. In-order
to do this', "it is necessary in the- first place to know how the platestiffnessand, loss factor depe.dd mpon t p daing layer thickness and dynamic properties.
This_-- investigated in. Chuntder V. Also considered is the dependence of the
p s late-sur..acd bending stresses on these..quantities,, when the piate is
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deformed in a given mode. Using these plate characteristics in conjunctionwith the criteria of Chapter III, the optimum mattiial properties and

thickness are found which minimise the response of a plate of given size.
The responsesof these 'optivised' plates are to be compared with those of
untreated plates.

Experimental verification is required for the sandwich plate theory
developed. Firstly, a comparison is required betwcen the theoretical values
of plate stiffness and loss factor, and values measured in harmonic tests.
The measurement of these quantities presents problems which are fully
discussed in Chapter VI and which (it is believed) have been overcome by the
development of suitable apparatus and testing technique. The apparatus has
also been used to measure the damping and stiffness of some commercial sandwich
samples. It is shown in Chapter VI how these measured results can be used to
compare the effectiveness of each commercial treatment as an aeroolane
structural element.

When the damping of a plate is increased to high values (of the
order of 10% of critical, or more), the random inertia forces due to the
plate motion are nc longer very much greater than the random external force
exciting the plate. There now exists a sighificant correlation between the
exciting force and the inertia force which is negligible when the damping is
light. These features must be included in the analysis of the loads on the
supports of a randomly-vibrating, heavily-damped plate. Chapter VII contains
the analysis for a damped s subject to a non-normal loading.

In this random theory, the concept of the complex stiffness is used
assuming its usual frequency-independent character. It is assumed, in effect,
that the complex stiffness at the resonant frequency of the system is applicable
throughout the frequency range, whereas we know that in fact it varies very
considerably. Further, it is assumed that the damping aud stiffness measured
under harmonic conditions may be used to compute the response under random
conditions. The legitimacy of each of these assumptions and ths validity
of the random theory have been examined experimentally by exciting the same
sandwich specimens as before with a randomly varying force. This experiment
is described in Chapter VIII.

nr
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TheDamping of Untreated Structures

II.1 The Sources of the DaPming

In this chapter we consider the sources and nature of the damping of
untreated structures. This is done in order to understand the significance
and magnitudes of some values of damping measured on ' Ull-scale and model
structures. These values are required in subsequent estimates of the effects
of damping treatments.

The sources of the damping of the structural vibration are:

(a) ths internal damping of the structural material
(b) the damping of the structural joints
(c) the acoustic radiation from the vibrating surface.

The internal damping capacity of conventional light alloys used in
aeroplane structures is very low. At a cyclic stress amvlitude of 2000 1b in
the cyclic energy dissipation is only 0.1% of the elastic energy at the maximum
strain. This increases to about 0.3% at 5000 lb in-2 . These rates of energy
dissipation cannot contribute more than +fw x 0.001 or x 0.003 to the
damping ratio of a structure vibrating with the respective maximum stress
amplitude. Measured values of structural damping are orders of magnitude
greater than these. Material damping is therefore insighificant by comparison
with the other sources, which will aow be discussed in greater detail.

11.2 The DamJinz of Structural Joints

When a structure vibrates in the modes described in Chapter I a number
of different and complicated loading actions are imposed upon the riveted
joints which exist between the skin plating and the stringers, between the
skin and tUe frames. For example, when a stringer-skin combination bends
(as in Figure 3C) the joining rivets undergo a shearing action, arising from
the usual shear stresses in a beam. In addition, they undergo a tensile-
comoressive action perpendicular to the plate surface, arising from the normal
plate inertia forces. When the same combination twists (as in Figure 3a) a
bending moment or a tensile-compressive loading is applied. The loading
actions on the stringer-frame joint are considerably more comulicated,
consisting of both twisting moments and bending moments, together with
shearing and tensile loads. Energy is dissipated at the joints under each of
these loading actions.

The mechanism of the dissipation under shear loading is fairly well
understood and has been described elsewhere by the author (13). The zechanisms
under the other loading actions have not yet been investigated, but the
predominant part must be played by slipping and plasticity of the contacting
surfaces. The non-lir-earity of these processes makes it extremely difficult
to study the combined effect of different loading actions applied simultaneously.

The damping of shear loaded riveted joints has been investigated
experimentally by the author (13). Tests were carried out on J in. diameter
countersunk rivets joining an 18 S.W.G. joint plate to a 20 S.W.G. Alclad
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stringer (see Figure 12). Flexural vibration of the stringer at about 150 cps
imposed the oscillating shear load on the joint. Measurements were made of the
energy input required to maintain steady vibration of the beam over a wide
range of amplitudes. Makirg due allowance for energy dissipation in various
"extraneous" sources, the dissipation at the joint was determined. Its
variation with load amplitude is shown by Curve I of Figure 13, where the
actual dissipation per -ycle has been divided by the square of the joint load
amplitude. We shall call. this quantity the "energy dissipation coefficient".

If the damping mechanism at the joint followed a simple linear viscous or
hysteretic law, then the dissipated energy ,iould be proportional to the square
of the load. A horizontal straight line would be obtained in Figure 13.
It'is seen, therefore, that the joint damping mechanism does behave in a
sensibly linear manner up to a load amplitude of about one pound in which load
region relative slipping of the joint plates probably begins. Thereafter the
damping increases more rapidly with load amplitude. Analysis of the rising
part of the curve suggests that th3 cyclic dissipation is proportional
(approximately) to the cube of the load amplitude.- The increase may be
attribjftcd to an increasing annular area over which slip is occurring.

In the early part of the experiment difficau.ty was found in obtaining
a smooth curve over the rising portion, and thia was traced to the fact that
the dissipation vas decreasing quite rapidly with time. This time variation
is shown in Figure 14, each section of the curve showing the change of
energy dissipation while the joint loai amplitude was maintained at a constant
value. The experiment was condt'cted • T the sequence indicated, different
constant amplitude levels being interspersed with zero-load wrest-periods".
The significant features of this curve are

(a) the very rapid drop of energy dissipation with time immediately after
the application of a new high load level

(b) the tendency for the dissipation ourve to flatten out after a long
period of steady loading, and then (it is believed) to approach a
constant value.

S~After this test involving prolonged loading, the dissipation was
again measured over the whole range of loads previously covered. Curve II

of Figure 13 was then obtained. Comparison with curve I (which is that of the
first test, before prolonged loading) indicates that the effect of prolonged
loading was effectively to shift the whole curve to the right, i.e. to delay
the load at which the slipping process began. The high values of dissipation
at large load amplitudes have been reduced, whereas the low value at low
loads has remained almost constant and now extends to rather higher load
levels.

An explanation for this phenomenon can be found in the inter-surface
deterioration which occurs when slip takes place. In the slipping process,
a welding and tearing action proceeds on the rubbing surfaces. This causes
oxidation of the rubbing surfaces (visible to the naked eye after the
experiment) and a reduction of the coefficient of friction. At the same time,
oxide deposits around the rivet shank increase the degree of fixity of the
rivet in its hole, and so increase the stifihesz s-f the joint. These two
effects together result tr decreased dissipation for a given load amplitude.

The energy diosipation due to a slipping process is obviously
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dependent upon the normal pressure between the two surfacea. In riveted
joints, this normal pressure is likely to vary considerably from one joint
to another. Considerable variation might be expected, therefore, between
the measured energy dissipation coefficients of nominally identical joints.
This has been investigated by testing a number of jointed beams of identical
design to that already considered. Figure 15 shows the variation of the
joint energy dissipation coefficients obtained from each of three beams,
after they had been subjected to prolonged loading. Over the low load range,
the dissipation coefficients are surprisingly close in value. The 'critical'
lclads at which the values begin to rise are of the same order, and by
shifting any curve either to the left or right it -ay quite accurately be
superimposed upon another of the curves. Rerroducibility of the energy
dissipat6ion of these riveted joints therefore appears to be possible over the
lower load range, but differences occur in the loads at which the rise begins.

From these results, some general prognostications may be made in

relation to the joint damping of reinforced plate structures:

(a) Harmonic tests at low vibration amplitudes should indicate that the
damping is sensibly linear.

(b) As the vibration amplitude increases each of the many joints involved
will enter the slipping condition, one after the other. No simple
Zeneral rule may be deduced to represent the associated increase of
damping. This must depend on the relative magnitudes of the loads on
the different joints, a-d on the critical slip loads.

(c) At high vibration amplitudes the damping may decrease with tire.

This is of serious importance when a constant high-level excitation
source is vibrating the structure (e.g. a jet-noise field), as the
vibration amplitude will then increase .with time.

(d) At low amplitudes, nominally identical structures should have
closely similar values of damping ratio for a given mode. At high
amplitudes the damping may vary from structure to structure. However,
these variations may not be as great (in proportion) as the differences
between the dissiation coefficients of simila. single joints at high
load levels, The presence of many joints in the structure may
effectively 'average-out' the effect of these differences.

Acoustic ijampins

11.3 Acoustic ,Damnin of Single Panels and Local Modes

In order to understand the nature of the acoustic damping of the
local modes of Chapter I, it is convenient first of all to study the
acoustic radiation from a single vibrating plate situated in an otherwise
rigid, infinite, plane baffle. This plate may be rega3ded as representing
the section of skin plating bounded by two adjacent stringers and frames.
Consideration of a Dlane rather than a clindrical baffle makes little
quantitative difference to the results, so long as the acoustic wavelengths
involved are not much greater than the cylinder diameter. The greater part of
this theory of acoustic damping was formerly presented by the author in
Reference 13.
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Each element, dxdy, of the vibrating surface may be considered as
an fleEantal piston vibrating with the local harmonic velocity of the plate,
-- &a . This piston radiates a pressure wave of -avelength X into
the surrounding medium of density p . At a point distant r faom the
piston the instantaneous pressure is known from classical acoustic theory
to be

;w.t 2nlV,&
dip ;pca_.e . e dxcy.

This has components in phase with, and in quadrature with the piston velocity.
Another piston, at the distance r from the first and vibrating in phase
with it, is subjected to both otf thns6 components. The existence of the in-
phase component means that the piston has to do work in moving against it,
and this then constitutes the damping "mechanisme. The existence of the
quadrature component stems from the inertia reaction on the piston from the
medium, and this gives rise to the "virtual inertiae of the medium, as seen by
the vibrating plate.

Extracting the real (in-phase) Dart ofjthe pressure from Equation 2.1,
and replacing the local piston velocity uoe:L by * (it being assumed that
the velocity variation is harmonic), the elemental damning pressure is foumd
to be

dp = Pc 2,_ sn (2ntr/X. ) ,...

w;here c is the speed of sound in the medium. The function
sin(2 fT r/ X ) * (21r/X) which represents the variatior, of pressure
with the distance r , bShes in a familiar way, being unity when r = 0,
zero when r = Xa/2 , and thereafter oscillating and decaying quite rapidly.

a
The :total damping pressure at the second piston due to all the other

elemental pistons is therefore

-- where the integration extends over the whole vibrating surface, r being
the. distance from the second piston to all the other elements. This is thedamping pressure on on__e side ;f the plate. if the plate can radiate freely
from both sides, the total effective damping pressure will be twice this. In

-- aeroplane structures, it is probably more accurate ;o assume free radiation
from the outside surface only, and the remaining work proceeds on this
assumption.

Smay be written in the form= q f(x, y), where 4 is the generalised
velocity of the plate vibrating in the mode f(x, y). Using this in
Equation 2.3, and forming the Rayleigh Dissipation Function, the generalised
damping coefficient corresponding to 4 is found to be

6 Pc. j(~) eZ Tra f(xjy Jxy. Ajr.(2

A ~A I
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Inspection of this double integral shows that the greater part of its
value must derive from that region of the plate over which the displacement,
f(x, y), has its greatest magnitudes. For most practical aircraft plate
sizes and natural frequencies th.s wavelength X will be much greater than
the longest dimension of this region. From this ait follows that a fair
approximation to the integral (2.4) may be obtained by putting

si (2wr/Xa) 1

Hence

', 2

or, putting X - 21rC/u/,.

~ ~I ft /•• jR(X,) AxA ... (2.5)

This shows that at low frequencies (i.e. large acoustic wavelengths) the
damping cefficient is proportional to the square of the frequency.

At very high frequencies (very small acoustic wavelengths) classical
acoustic theory shows that the local damping pressure on a vibrating surface
is pe x the local normal velocity,

i.e. "

The generalised damping coefficient is then found to be

PC 2 (xIy) MAy

which is independent of frequr.ncy.

From these damping ccefficients we may obtain the damping ratios
S -- Icorresponding to the natuna.l frequency of the plate, W n

i.e. (bac at ?n) 4 critical damping coefficient. The critical generalised
damping coefficient of the plate is given by

2 x natural frequency x generalised mass

~~) = n[ )2(x-•j dx 't
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where tL is the local plate miss per unit area, and will be lbaken to he
constant over the plate. The d~amping ratios for low and high natutral frequenties
are then

~.±."t~ {JA~'~~J0.0 (2.7)
C 41C p~{j. 2() 2i&

for low frequencies, and

. .(2.8)

*for high freuencies.

At low frequencies, the damping ratio theref~ore tU~ends on the mode in
which the plate vibrates, but this is not so at high frceiuencies.

If the plate is rectangular,-simply supported and -ibrates in its
fundameaital mode ( f(x,y) ---sin iT x/a . sin Ir y/b), the integrals in
Equation 2.7 may be evaluated.

The natural frequency of the plate in this mode* is knaown to be

i ( + +.2 2v(t ) -77(m + V

,Where Ba is the l plate Young'sModulus , pr unit a , dnswit, e t is the
tikesand n stelnt rat aiab.I eiigthe 2onstant
fatriithis exrsin oso' ai a ae ob .. The dam-ing

"ranti of e the plateis then found to be

S(n I/n)

For a given plate material and mode of vibration, the acoustic damping
ratio is seen to be dependent only upon the air density, the sound velocity
and the length : breadth ratio of the plate, provided the plate i. not so
long as to invalidate the long-acoustic-wavelength assumption.

If the rectangular plate is fully fixed along all four edges, we
may obtain an order of magnitude e~tiession for S t by assuming
fu(x, y) cosd-e lf Tacos (sin /b)l -a .s This gives

.1 ~Wf 2Irtb) 2/3n2n/fV~J +a un)

(The accurate value involves the contant 1.07 instead of 1.098). The
damping ratio is now found to be

S+. = (o-'+/c)(,+/e 1,),/ I.) (- + ,/, ~If*)... (2.1)
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Figure 18 shows Sac plotted against n for an alumnium plate
with each of the edge conditions considered. A lahgth : breadth ratio of three -

is typical of fuselage panels; such a panel on its g may be expected therefore
to have an acoustic damping ratio of about 0-004 or 0.005, depending ca the
edge support.

When allowance is made for the decay of the pressure amplitude with
increasing distance from an elemental piston (i-e. including -the
sin(21 r/ X )/(21r/ W X) term eorrectly) the integral of Equation 2.4 can only
be evaluate& numerically. The acoustic damping pressure over the panel must
then be less than that assumed in the above theory, and the damping ratios will
therefore be less. This effect will :increase with increasing length of plate,
i.e. with n . Such a numerical evaluation has been carried out by
Hac-igiarotty (14) under the author's direction. For the special case of an
aluminium plate, 5 i" wide and 0.048 in. thick, te damping ratios are
presented as points an Figure 16, shos-ing the reduction due to the decaying
(or'"non-uniformO) pressu,3.

Ve can now considez qualitatively the acoustic damping of a mode
which involves two or more adjacent panels, separated by a flexurally stiff
longitudinal stringer. Firstly , sup7ose that the panels are vibrating
in phass iJit ohs another in 'fixed-sided' modes (similar to the type C modes
of Figure 3). There will. be a dampimg pressure on each panel due to the
adjacent paneLs. If the paiel width is small compared with the sound
wavelength, and there are tvo such adjacent panels, the damping pressure will
be nearly twice' that of a cingle panel. Likewise, the damping pressure on
three narrov, adjacent panelý will be nearly three times that of the single
panel. The acoustic damping ratio of this mode is therefore likely to be of
t--e order of 0.015.

If the panels are separated by a torsionally flexible stringer, and
each vibrates in a 'simply-supported' mode in anti-phase with its neighbouring
panels, tbe damping pressure from one panel will tend to cancel out the
pressure cia its neighbour, and vice-versa. The acoustic damping of such
modes is likely to be negligibly small. Local modes of type A (Figure 3)
will thzefore have negligible acoustic damping.

If there is a row of several adjacent similar fixed-sided panels, a
rough estimate of the acoustic damping may be made assuming the existence of
an infinite line of panels. Suppose the radiated sound wavelength is greater
than several panel widths. The damping pressure at the centre of the rth
panel due to vibration of the sth panel in the node qs fS(x, y) is given
approximtely by

fc KZ 2r. (-cr-rv x 4/AF)(X

(from Equation 2.3), where r - r is the distance between th centres of
pnaels r and s . If all t~e pa~els vibrate in the same mode and with the
same amplItude, the total pressure at the centre of the rth panRl will be
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The summation extends over all the pan"'s.

Mhe damping coefficient will now be calculated assuming that the
pressure at all points on any panel is equal to that at the panel centre.
We first find an approximate value for );he infinite , using the integralJ s eX ck =

x 2

If the panel width is b , this gives

S 21r 2T .- '-r)X . _

S a.-

and the damping prassure becomes

;1 ~ b jp

The contribution from any panel to the generalised damping coefficient
of the whole system is then

"which is Xa/b times the damping coefficient of a single isolated panel.
The damping ratio of the whole system will then be approximately A /b

times that of the single panel. a

For the Caravelle fuselage, the frequency of the type C modes was
Sapproximately .000 cps ( Aa = 13 in.), the panel width was about 3* in.

and the length : breadth ratio vas 2 . The acoustic damping ratio would
therefore be of the order of (13/3.5)x 0.004 = 0.0J.5, if the stringers did
not bend or contribute appreciably to the potential energy of the vibration.
That they do in fact contribute inevitably means that the value of sac
calculated above is an over-estimate. a

If a second long row of pan.ls exists alongside the first, cancellation
of the damping must occur if they vibrate in counter-phase with the first.
Reinforce~mt of the damping nrast occur if they vibrate in phase vi1th the
first. The Caravelle tests gave no indicatioa of any phase-relationzhips
(correlation) across frames, and it was concluded that each row of ppnels
(between frames) was vibrating independentlye No reinforcement or
c•ancellation would then occur.

t
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,11.4 he.Dam2Lna of Model Structures

This section reviews some values of the damping of model structures
measured by the author and others. The modes represented small sections of
a fuselage structure and cor 4Isted of stringers, frames and skin plating of
normal dimepsions, riveted together with standard sized rivets and by standard
techniques.

In the first investigation (by the author, with ro (13)) a top-hat
section stringer was tested which had a narrow 18 S.W.G. plate riveted to
its flanges (see Figure 17). The rivets were identical to those of para 11.2.
The stringer was excited in ite fundamental beading mode, subjecting ýhe
rivets to shear loads together with small normal loads. Values of tha
"equivalent linear damping ratio3 (as defined in refcrence 15) were measured
over a range of beam amplitudes. At the l4hest amplitude, when the greatest
rivet shear load was about 7 lb., the damping ratio of the whole beam uas
only 0.00025. This is about twice that expected from the material damping.

The contribution of the rivet damping to this total was calculated using the
method proposed by the author (16) incorporating the rivet d=mping properties
measured on single joints. The rivez contribution came to only 2% of the measured
total• A greater contribution would be made if the beam was shorter or if only
one line of rivets attached the plate to the stringer. Even tnder these
conditions, the contribution of the stringer-skin rivets to the total damping
ratio will still be a very small proportion of the total damping. Damping
ratios of the order of 0.004 and more have been measured for local" modes
"of larger models (see later paragraphs). We may reamonably conclude, there-
fore, that the shearing of the stringer-skin rivets does not contribute
appreciably to the damping of these modes.

As one part of another project,Mercer(17) under the authorgs
direction, measured the damping of some local modes of a plate which was
reinforced by two frames along its long edges (see Figure 18) and by
seven equi-spaced stringers across its width. Each panel so formed was
6.75 in. wide, 13.5 -in. long and 0.028 in. thick. Attachment rivets were et
1.5 in. pitch. The structure was excited harmonically, using light exciter
coils at each panel centre. Modes of Type A (stringer torsion modes of
Figure 3) had damping ratios of about 0.006 to 0.007 . These were the same
when the model was in free air or in vacuo. i.e. acoustic damping was
negligible. N.odes of Type 0 (stringer bending modes of Figure 3) had
damping ratios of 0.01 to 0.011, and these were slightly smaller in vacuo
then in free air. Acoustic damping would not be large for this model as

it was "unbaffled", and pressure cancellation could occur from one side of
the model to the other. It is noteworthy that the stringer bending mode had
a larger damping ratio than the torsion mode.

A very significant feature of this experiment was that the frequency-
response curve from the strain at a panel centre showed groups of peaks
centred on the natural frequencies of the Type A and Type C modes. Some of
these peaks must correspond with modes in the 'intermediate' class, mentioned
in Chapter I, para 1.2, but more peaks existed than could be accounted for
in this way. The dominant Type A mode for one specimen occurred at a
frequency of 348 cps, but two strong peaks also occurred at 144 cpa and
142 cps. A cursory examination indicated that the modes at these
frequencies were similar in form to the Type A mode. (They cannot, of course,
be 'too' similar without violating the orthogonality condition). The
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signifance of this feature will appear in para 11.5.

Ford and Clarkson (18) have studied the local modes of a curved
reinforced structure measuring 6 ft. by 4 ft. The stringer and frame spacings
were 4.5 in. and 9 in. respectively. The skin thickness was 0.028 in. and the
rivet pitch was 1 in. The structure was -excited harmonically using plane
sound waves from a loudspeaker. Strain gauges measured the strain response
at the centres of tean adjacent panels between the middle two frames. In the
course of the invb.t" gation, the following damping ratios were measured from
'vector plots' of the response:

Frequency Mode Darping
c.p.s. Ratio

i() 310 Stringer Torsion, Fig. 3a 0.046

(ii) 341 Every fourth stringer bending, Others
bending and twisting. Fig. 19a 0.0034

(iii) 354 Every third stringer bending, Others
twisting and bending. Fig. 19b 0.0036

(iv) 384 Every other stringer bending, Others
twisting. Fig. 19c 0.005

(v) 396 Similar to (iv) Fig. 19d 0.0047

(vi) 600 Stringer bending. Fig. 3c 0.008

A full discussion of these results is not possible since very little is

really known about the modes of vibration. The modes drawn in Figure 19 were
deduced entirely from the measured bending strains at panel centres, so the
ratios of stringer displacements to panel centre displacements were not known.
Further, the extent to which adjacent rows of panels were participating
(a factor on which the acoustic damping depends) was also not known. It may

i be observed, however, that the davwinr, of the stringer bending mode is again
-appreciably greater than that of the it-ringer torsion mode. Also, the damping
ratios of modes (ii), (iii), (iv) and (vi) increase progressively as more
strirgers appear to undergo pure bending loads. This increase could be
attributed to a progressive increase in one (or more) particular loading
action, e.g. the shear load on the stringer-frame joint, or the normal load
on the stringer-skin joint. It is unlikely to be attributable to increasing
shear loads on the stringer-skin joints, as this loading action has been shown
to make aa insignificant contribution to tne damping. Inspection of the mode's
of displacement suggests that acoustic damping should not be significant
except in the stringer bending mode at 600 cps. in the absence of information
regarding the motion of adjacent rows of panels, no furthtir com=.,t may be
made on this point.
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11.5 T'e Dampinp of Actual Aeroplane Structures

The only damping data relating to actual structures are three values
obtained by Clarkson and Ford in their Caravelle and Comet investigations (8).
The measurements were made from the random signals from strain gauges on
various r!anel centres as the structure vibrated in a jet-noise field.

The method of measurement depends on the following property of the
random response of a single degree of freedom system. If the random exciting
force has a flat spectrum in the neighbourhood of the system natural frequency,
the auto-correlation function of the response forms a damped cosine curve when
plotted against the time delay. The rate of decay of this curve, with respect
to time delsy, is the same as that of the free damped vibration of the system
with respect to real time.

Accordingly, the random strain gauge signals were filtered through a
½ octave band filter centred on the natural frequency of t1he stringer torsion
mede of the structure. This filtering was intended to isolate the response
of one mode only. The filtered signal was then auto,:correlated and the
decay of the auto-correlation curve was measured. The damping ratios derived
are shown below:

Location Frequency Damping
of Panel Panel Size c.p.s. Ratio

Caravelle Rear 7 in. between frames 600 0.016
Fuselage 3.5 in. between stringers

Caravelle 7 in. stringer to edge 300 0.020
Elevator 5.6 in. between ribd

Comet Tailplane 11 in. between ribs 4.00 0.014
6 in. between stringers

These values are considerably greater than anythIng measured on
laboratory specimens. Two reasons may be offered for this:

Wi) Shielded leads to the strain gauges were taped or glued to the panels
and stringers concerned. This could increase the damping very
considerably.

(ii) There is good reason to believe that the filtering did not, in fact,
isolate a single mode, but that more than one structural resonance
was contained within the frequency band of the filter. Mercer, it

--- will be rec-Uled, found a group of resonant frequencies centred on
the stringer torsion frequency, and this could be true of the actual
aeroplane structures. The auto-correlation technique used to measurethe damping is unable to differentiate between the d-M~in~g of a single
mode and the total damping of two (or more) 'close? modes contained
within the filter bandwidth, e.g. the damping ratio 0.016 could Lmply:
the existence of two modes, equally excited, uith damping ratios of
approximately 0.008.
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The resolving power of the technique therefore needs to be much
improved before the results of such damping measurements can be treated with
much confidence. Care must also be taken to ensure that the measuring
equipment does not add to the structural damping.

I1.6 Concludina-Remarks on the Damoinry of Untreated Structures

Experiments on single Joints indicate that the damping of nominally
idential structures at low amplitude levels should be sensibly linear and
substantially the same from one structure to another. At high amplitudes,

non-linearity and time dependence of the damping is to be expected.

Acoustic radiation appears to be capable of developing damping rati os
of 0.016 or more for stringer bending modes, but such highly damped modes have
not yet been isolated in model work. The magnitude of the acoustic damping
depends criti~ally upon the phase-relationship between the motion of adjaceat
panels or rows of panels. Reinforcement or cancellation of the acoustic
damping may occur, depending on whether adjacent panels (or rows) are in-phase
or out-of-phase. The acoustic damping of stringer torsion modes should be
negligible.

Measured values of the damping of model structures have not been
obtained in systematic damping studies, so few general conclusions are
warranted. It appears, however, from the work of both Mercer and Ford that
stringer bending modes have higher damping than stringer torsion modes. The
principal source of the bending mode damping is thought to be in the stringer-
frame joint. Mercer's small model with large panels had damping ratios of
0.011 and 0.006 respectively for the two modes, whereas Fordt s large model
with small panels had damping ratios of 0.008 and 0.005.

SDamping ratios measured on actual aeroplane structures were in the
region of 0.014 to 0.020. Confidence canvot yet be placed in these results,
owing to deficiencies in the resolving power of the measuring technique and
also to the possible presence of extraneous damping sources in the expariments.

* In subsequent calculations in which are required some values of the
damping of untreated structures, we shall therefore take 0.005 as representing
the lowest values and 0.0125 for the highest values. There is obviously
a considerable degree of arbitrarimess about the litter figure.

2
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Criteria for Comparinp the Effectiveness of Damping Treatments

III.1 The Need for Criteria

It has been common practice for many years to specify the effectiveness
of a damping treatment by the amount by which it increases the loss factor of
the system to which it is added. This practice stemmed from early unconstrained
layer treatments being soft and adding little to the stiffness of the steel
plates to which they were applied. The treatment giving the greatest loss
factor increase would also give the greatest attenuation of response, and the
efficiency of the treatment could be judged by the "loss factor per given weight
of treatment". Now that damping treatments are being used on light, aluminium
structures, a reconsideration of this criterion is necessary, since the
incorporation of modern treatments changes the system stiffness quite
considerably.

Acoustically excited vibration, the associated stresses and the transmitted
noise, together with numerous other response quantities depend in different ways
upon the damping, stiffness and mass cf the system. Some of the quantities
increase with increasing stiffness, whereas others decrease. Since the
effectiveness of a damping treatment must ultimately be judged by its effect
upon the respohse, it is evident that the loss factor increment alone is an
insufficient criterion by which to judge. Furthermore, different -criteria
are required when considering different response quantities.

In this chapter criteria are derived which provide a basis for comparing
the effects of different trekttments on a number of response quantities.
Expressions are first derived (or quoted) for various response quantities
of simple linear systems in terms of the mass, stiffness and damping of the
systems. Both-random and harmonic excitations are considered. From these
expressions the "criteria" are deduced, For the systems under harmonic
excitation the derived expressions relate to resonant conditions, and a
comparison is sought between their magnitudes before and after the damping
treatment is added.

It must be recognised that, in general, the damping treatment will
change the resonant frequency of the system. If the P,'equency of the harmonic
exciting force does not change, then a system initially at resonance will
be "de-tuned" and the resultant attenuation of the response will not necessarily

* be due to the damping of the treatment. However, in most systems to which
damping treatments are likely to be applied the frequency of excitation changes
with changes of operating conditions, and there i3 bound to be some operating
condition, at which resonance of the treated system will occur. The response
at this new condition should therefore be compared with the response at the
untreated resonant condition, under the assumption that the amplitude of the
exciting force is the same at both frequencies. This is, in effect, what is
done in section 111.2 of this chapter, where consideration is given to the
amplitudes of harmonic displacement, velocity acceleration, inertia force and
the surface bending stresses of a vibrating. In all cases, the response in
one mode of vibration only is considered, it being furthar assumed that the
damping trzatment does not change the mode.

Section 111.3 considers damping treatments iD relation to harmonic
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sound transmission through simple structi,re. Once agaih, resonant conditions
are assumed to pertain both before and after the treatment is applied, it
being assumed that changing the operating conditions can always restore the
system to a resonant state. Coincidence transmission through plates of
infinite length is also considered, the change in the operating conditions
required to restore coincidence after the treatment has been added being
explained in the text.

In section 111.4 random excitation of the system is considered and
further criteria relating to displacement, acceleration, inertia force and
bending stress are investigated. Here there is no need to consider changing
operating conditions when the treatment is added to the system. The only
assumption that is necessary is that the power spectral density of the existing
force is the same at the resonant frequencies of both the untreated and
treated systems, and, furthermore, does not vary appreciably in the region
of the resonant frequencies. Finally, this section deals with the effect
of a damping treatment upon the sound pressure transmitted through two simple
plate structures subjected to random pressure fluctuation3.

111.2 Criteria ADolicable to Harmonic Vibrtions

111.2.1 Characteristics of the Mechanical System

Here we consider the effect of a damping treatment on the response of
a system vibrating in a single natural. mode of vibration under the action of
a harmonic exciting force. Before the damping treatment is added, thegeneralised mass and stiffness of the system are M and K respectively.

-Suppose also that there exists a viscous damping mechanism, giving a it
generaised damping coefficient C . Denoting the exciting force by P.e
the equation of motion of the system (in terms of the generalised displacement,
q) is

M•, + c•, +.h. e~ ,•..

The damping treatment increases the mass and stiffness coefficients to M@1
and K A +(1 * iv) respectively. If the vibrating system is a uniform flat
plate attached to a rigid structure, and the damping treatment is in the form
of a uniform layer over the plate, then 0 is the factor by which the
treatment increases the mass per unit area, and A is the factor by which it
increases the flexural stiffness of the plate. The equation of motion after

treatment is therefore

Me• . c4 .. RIi,) "Pce' +C ... (+.2)

111.2.2 The Effect of the Treatment on the Resonant Displacement Amolitude

Provided the initial damping (represented by C) is-small compared
with the added damping, the maximum amplitude of q (denoted by ýmsx) occurs
at the frequency

• • .'-",, = (1(./MeY .. J

Then C -
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Now the maximum displacement of the system in its untreated condition can be
expressed in the form PA qi where 'i is twice the damping ratio (C/Ccrit)
corresponding to the initial damping. Th:e- effect of the damping treatment
has therefore been to divide the initial resonant displacement amplitude by

i . The effectiveness, and hence the efficiency, of c treatment used to
attenuate vibration displacements is evidently measured by the value of the
product R In general, for unconstrained layers, this product increases
monotonically with the quantity of treatment added, whereas q approaches an
asymptotic value. Kikq is of course a truie measure of the damping added
to the system, whereas I is a function of the damping and stiffness. The
criterion by which different treatments should be judged when used ti, attenuate
harmonic vibration displacements is therefore the value of 1 per ..Ven weight
of treatment. Similarly, when the effect of increasing the amount of a given
treatment is considered, the values of A for the different amounts should
be compared. The value of I itself is an insufficient criterion.

111.2.3 The Effect of the Treatment on the Surface Bendin! Stresses of a
Vibrating Plate

The effect of small thicknesses of unconstrained layer treatments on
plate bending stresses is virtually the same as the effect on the displacement
amplitude. However, the surface stress is proportional to the product of the
amplitude of curvature anO the distance between the surface and the effective
neutral surface of the section, and with large thicknesses this distance may
be up to five times that for the untreated plate. Suppose this distance before
treatment is y , and after treatment ia c y. Since the amplitude of the
oscillating. curyature is proportional to the displacement amplitude, the
surface stress in the untreated state is proportional to .yP/Kvi , and it
the treated state to o(yP/KRV. The final stress is therefore equal to the
initial stress divided by - i

With sandwich plates, the concept of neutral surfaces no longer holds.
Suppose now that the surface stress at a point on the untreated plate is u
when deformed in a given mode of normal displacement by a given amount. When
the sandwich plate is deformed in the same way and by the same amount, the
surface stress will be o' cr , say. (CO. may have values betweený and 3) , .Under the ha~onu3c excitation previously issunmd, the ratio of

• the oscillating stresses is evidently 1 : ýi/R %lots- "

In each case, the factu. : - represents the effect of the dampli
treatment, the larger it is the smaller being the bending stress. Kt
is then the criterion by which different treatments should be judged when
condidering their effects upon surface bending stresses due to harmonic
vibration at resonance. We shall call ot the "stress ratio". For plates
tieated with unconstrained layers the above definitions turn out to be the same,

so the suffix 's' is not, in fact, required.

I11.2.4 Jhe Effect on the Resonant Velocity Amolitude

'he amplitude of the generalised velocity of the system is given by wF
where q is the displacement amplitude at the frequency W) 2  This may easilybe shown to have a maximum value at the frequency wn (1 • Z .) when theqssump' . is made that the viscous damping is small compared with the
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hysteretic damping. At this frequency the velocity amplitude is given by

which, for small values of reduces to

I4t P/ K~ M e 6

The maximum attenuatjo. of harmonic velocity amplitude is obviously obtainedwhen the product R@ SQT1 is as large as possible. The mass of the treatment(included in the factor 9) is now important, but when comparing the effective-ness of equ4l weights of differenL treatments the significant parameter is theproduct K' •. The criterion by which different treatments should be judgedwhen used to attenuate vibration velocity amplitudes is therefore the value
of K I per given weight of treatment. When judging the f fect of diffe:-entquantities of the same treatment the complete exprecsion R194 must be
used as the criterion.

111.2.5 The Effect on the Resonant Acceleration and Inerti Force Anclitudes

The generalised acceleration- amplitude under harmonic excitatioR ýsgiven by w, . This has a maximum value at the frequency , (I +making the same assumption as before with regard to the magnituce of the
viscous damping. At this frequency the acceleration amplitude is given by

- P/Me"(,÷.)

reducing to

S=
S, , , .' . . ( 3 ., • )

'for small valves of • This is minimised by making 0 as large as possible.Considering equal weights of different treatments, the signficant parameteris evidently q itself. Its value is therefore a sufficient criterion bywhich to judge the efficiency of a given quantity of treatment used to attenuate
acceleration amplitudes.

The inertia force amplitude is directly proportional to the produc ofthe generalised mass and the generalised acceleration amplitude. Its maximumvalue therefore occurs at the same frequency as the maximum acceleration, and
is proportional to

SP / ,q

reducing to P/1 for small ' Again, the value of for a given weight
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of treatment is a sufficient criterion by which to judge the efficiency when
attenuating inertia force amplitudes.

It should be noted that as Y1 becomes large, the term vt(i 2)-4

approaches unity. Any attempt to increase the value of -q provided by a given
treatment when q is a-rc-dy large, is not then accompaziedd by a worth-while
reduction of acceleration or inertia force amplitude. It is probable, however,
that when I is large enough for this effect to be important, the problems
arising from the accelerations and inertia forces wi.U have already been solved.
The criteria developed in the whole of this section are summarised in table 1-

111.3 Criteria ADolicable to Harmonic Sound Transmission through Simple Structures

As the addition of damping to a system has little effect upon forced
vibrations apart from those occurring at resonance, this section will deal
only with sound transmitted under structural resonant conditions and "coincidence"
conditions. Two special cases only will be considered but these will serve
to show the different ways in which the mass, stiffness and damping properties
uf the treatzmnt affect the transmitted sound pressure. This implies, of
course, that different efficiency criteria are required for judging the merits
of different treatments, depending dn the nature of the transmission.

Two very simple transmission mechanisms will be considered:

(1) The sound transmitted through a finite flexible plate set in an
otherwise rigid and infinite wall (or baffle). An incident field of
plane harmonic sound waves impinges on one side of the plate causing
resonance in one of its natural modes. The sound wavelength is
assumed to be large compared with the plate dimensions.

(2) The sound transmitted through an infinite flexible plate when an
infinite field c' plane harmoric waves impinges on one side, causing
"!coincidence" transmission to exist.

111.3.1 The Sound Transmnitted Through a Finite Plate

As stated above, the plate is considered to be mounted in an infinite
rigid wall. Firstly, it is assumed that free field conditions exist on both
sides of the wall, and on one side the incident field exerts an oscillating
pressure on the plate. It is further assumed that the Mavelength of the sound
radiated by the motion of the plate is large ccmpared with the plate dimensions.
(This is inevitable if the incident sound wavelength is large, as already
assumed).

Now the sound pressure at any distance from the plate is found by
integrating Equatio4 2.1 (Chapter II)over the whole plate surface. If
both r and X are large compared with the plate dimensions, the
integration yielas

where q is the amplitude of the generalised velocity corresponding to the
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mode f(xy) • The sound pressure amplitude is therefore proportional to
Slq4 , i.e. to the amplitude of the generalised acceleraton . We may

therefore use the result of the last section to obtain the criterion relating
to rFesonant harmonic sound pressure transmitted through a simple plate.
The sound transmitted is evidently proportional to

in which P is now to be interpreted as the generalised force corresponding
to the incident sound pressure. and MG as the generalised mass of the plate
corresponding to the given mode. It is implicit that the acoustic radiation
damping is small compared with the treatment damping, an assumption which
is justifiable for any conceivable plate. For a given weight of damping o,
treatment, the transmitted pressure is inversely proportional to V (1 V-)-,

which expression is the criterion required.

Now if one side of the plate is enclosed by a reverberant cavity, the
natural modes of the plate will couple with standing waves within the cavity.
There are, in fact, an infinite number of standing waves with which: any one plate
mode may couple, implying that there is an infinite set of natural frequencies
at which the mode may resonante. (See, for example, refs. 19, 20). It is
required to establish, therefore, the relationship between the resonant pressure
amplitude within the cavity, corresponding to any one of the standing wave
systems, and the generalised plate characteristics (including 0, A and i .
A preliminary investigation has been carried out by the author (the work to be
published later) considering a rectangular cavity, one wall of which .consists
of the. flexible plate assumed to have simply supported edges. The other
wells were considered to be rigid. The results of the analysis suggest the
following effects of increasing 0 , 2 and I :

The sound pressure at each of the standing wave resonances is inversely
proportional to T? . The effect of increasing @ and R may be combined by
considering the effect they have on the uncoupled natural frequency of the
plate, and then examining the effect of change of frequency. If the coupled
standing wave - plate natural frequency is much less than that of the uncoupled
plate, then an increase of tue plate frequency tends to increase the resonant
sound pressure. if, on the other hand, the coupled frequency is considerably
greater than the plate frequency, then increasing the plate frequency decreases
the resonant sound pressure. When the coupled frequency is close to the plate
frequency, no such generalisation may be made and each case must be considered
on its own merits.

111.3.2 The Sound Transmitted by Coincidence throufh an Infinite Plate

We now consider the effect of a damping treatment ou the sound pressure
transmitted through an infinite plate (or beam), on one side of which is an
incident sound field of plannharmonic waves whose wave-fronts are inclined
at an angle A to the plate surface. Before the treatment iý added,
coincidence transmission exists, the trace velocity of the incident, field
coinciding exactly with the phase velocity of the flerural wave in the
plate excited by the Lncident field. The transmitted pressure is then equal
to the incident sound pressur . The massand stiffness of the damping
treatment changes the phase velocity of the flexural wave, and if tne
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incident souni field remains the same, a de-tuning effect will reduce the
transmitted-pressure. The reduction due to the de-tuning may be considerably
greater than that due to the additional damping. If, however, the inclination
Or the frequency of the incident field is changed (the incident pressure
remaining constant) and coincidence conditions are restored, then a measure
of the effectiveness of the damping treatment may be found by comparing the
transmitted sound pressure under these new coincidence conditions with the
pressure under the initial conditions.

In the subsequent analysis, a unit width of the treated plate need
only be considered. This has a complex flexiral stiffness RD(l 4 iq) and
a mbass per unit length pA . The imaginary part of the complex stiffness
represents the internal damping due to the dtemping treatment. D and 1A are
the flexural stiffness and mass per unit area before the treatment is added.
R and 0 are the stiffness and mass factors reprezsnting the effect of the

treatment.

Let the incident pressure amplitude be pi Due to reflection of the
incident wave and consequent pressure doubling, the incident pressure acting
on the plate is given by

(See Figure 20 for explanation of undefined symbols). If it is assumed
already that the flezural wave in the plate is of harmonic form, and of
wavelength Xt , it may be shown that the transmitted (or re-radiated)
pressure, pt , acting on the plate surface is

pc s5c.,. w/a ... (.w.)

vhzrs w is the local transverse bending displacement of the plate.
this re-radiation occurs from each side of the plate, the net re-radiation
pres.-ure acting on the plate is 2 se t .a .
The equation for the forced motioD of the plate may now be written

R-D~~.. (I+I. •pe .12)
-'-p C"P ; (lt + -2t-,/xt) , .-e.c2 .(3.. .1I

Derivative- of w with ruspect to y are zero, since the sound field

consists of infinite bl-kne waves. Putting w = w exp i(w t + 2x/X X t ),
equating the real and imagirnary parts on both sides and eliminating 1
it is found that

2p-b(2[10{ 22 (2tx)
ILA. 

6
aI [ D 2V T W +2rc W U4~41 (3-13)

For small vt , it is sufficiently accurate to consider coincidence transmission
occurring at the frequency e a , given by

Q (3 14)j
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The local plate velocity and the incident sound pressure are then exactly
in phas &,id the transmitted sound pressure is close to its maximum v&lue,
which actually nccurs at a slightly greater frequency.

At the frequeny :3 , the transmitted sound pressure amplitude
is c p c.cos . Substitution for i and rearrangement yields

Now the trace wavelength At is related to wa by

and also by 4 ... (3.16)

Using these relationships, X and w , or X and $ may be
eliminated from equation 3.15. We thenave *

= . -. • (rG) (K)f) =] ...k0,7)--'-- • = P• + 2r°•4

or

Equation 3.17 may be used to indicate the effect of t , and i on
the transmitted pressure when the inclination of the incident field is kept
constant while th6 frequency is varied to restore coincidence. Equation 3.18may be used to indicate the effect when the frequency is kept constant and the
inclination is changed. It is implied here that coincidence transmission
may indeed be re'.tored. Tnis may not always be possible, as suggested, for
example, by the term {1 - (c 2/wc)(•O/RD)•- in equation 3.18 • If
Q/R is such as to make this term vanish, or'to be imaginary, coincidence
transmission cannot occur at the particular frequency w

Now when vi is zero (no internal damping), Pt = Pi " The pressure
amopitude transmitted under damped corndtiors is therefore i/ki or l/kw

* times that transmitted under undamped conditions. The signficagt factors
involved in ký and k, which must be made as great as possible in order
to produce the greatest attenuation of pressure are:

and I - 2 / ... ,3.20o)

!t is evident that r should be as great as possible for the greatest
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attenuation. Furthermore, exprezslon 3.19 indicates that it is desirable
for R to be as small as possible. In this ease, an increase of stiffnose
counteractc, in some measure, the effect of the increased damping.

It may be not.ed that the term (,i/D)*(G/$t )ý in expression 3.20 is
inversely proportional to the resonant frequency of a treated finite plate,
when vibratin8g in a flexural mode of wavelength )÷ . The value of
expression 3.20 is reduced when this frequen-y decreases, indicating therefore
that it is undesirable for the damping treatment to decrease the resonant
frequency of the system if the transmittaed sound pressure under constant
frequency conditions is to be minimised. If two different dqmping treatments
provide equal loss factors, 9 , the most effective treatment will be that
giving the greatest frequency increase (or smallest decrease).

111.4 Criteria Agplicable to Random Vibration§

111.4.1 Random Mechanical Res-ponse tuantities

Once again, the response of a single degree of freedom system only
will be considered The system is excited by a force which varies randomly
with time, and it is assumed that the power spectrum of the corresponding
generalised force does no' vary appreciably in the region of the natural
frequency of the system. The equation of motion of the system, in terms
of the generalised displacement, q , Is

Mo** + c* + = ... (3.21)

where P(t) represents t1n random exciting force. If the power spectral
density 6f P(W) is denoted by (W) , then it is well known that the
power spectral tensity of the gene~alised displacement, j q (W ), is given
by

SC)i =,...(3.22)

I Z |2 is the square of the mcdulus of the mechanical impedance,

i.e. (KP.-' ,M9) + ( K r( i..(3.23)

The mean square vwlie of the gene.ralised displacemeat, q > is given
by ' fq(w ) dtw . Under the restriction Vaoted abovze the vauriationa of i( ), and assuming small total damping, the integral
yields

< 2(0)(192/K (C Kiq/W,, ... (3.24)

vhp.re .Kt i9
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We assume now that the initial viscous damping is very muah smaller than
the added hysteretic damping, and also allow that -q may be large (i.e. of the
order of 1). The root mean square displacement then becomes

where F 2 eight...(3.26b)

Thus the r.m.s. displacement is inversely proportionsl to Fj 61
Iv and the corresponding efficiency criterion for a damping treatment is the

-14of , k F -) per given weight of treatment. It follows, by direct

comparison witA para 111.2.3 that the criterion relating to the surface
bending stress of a treated plate is al", F per given weight of
treatment.

I (When • is very small, Fd(1t) is very nearly equal to one, and
expression 3.2 6 a reduces to that normally quoted fo. the r.m.s. displacement
of a lightly damped, randomly-vibrating system of one degree of freedom.
When - is large, F•(q) may be-regarded as a 'large damping correction
factor' converting the expression for the r.m.s. displacement of the lightly
damped system to that of the heavily-damped system. It has the value of
1.14 when 1 , and 1.04 when = 0.5).

Under the same assumptions as above, the root mean square value of the
generalised random velocity is given by 3 L

where [ 2 ... (3.27b)

The r.m.s. velocity is therefore inversely proportional to It (.'),
and the corresponding efficiency criterion is the value of Yt v(vi) per
given weight of treatment.

Consider now the mean square value of the random generalised
acceleration. The power spectral density of the acceleration is given by
w times the p-.ver spectral density of the generalised displacement.
Integrating this from t4 = 0 to u) = w, and making the same restrictions
as above upon the variation of the vower spectrum in the region of the
natural frequency, the mean square value of the generaJised acceleration
is found to be

where F ee.(.28b)
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The first of the two components of this expression %ky be said to derive from
the resonant response of the system, and is therefore dependent upon the
damping. The second compbnent is associated with the inertia reaction of the
system, depending only upon the mass of the system. The relative magnitudes
of the two components are obviously critically dependent upon the shape of the
spectrum of the generalised force. If the resonant component is small
compared with the other, the effect of the damping treatment will be mainly
that of its mass, i.e. "mass law" attenuation will pertain. If the resoiant
compqnent forms an appreciable part of the total response, then the criterion
S-1 F (I ) may be used to compare the effects on random acceleration

of equalaweights of different treatments. It is convenient to take the square
rootof this criteriot and since i is often much less than one, it becomes

The force exerted by a randomly excited system on its supports consists
of the vector -3um of ths exciting forces and the inertia forces corresponding
to t1B response of the system. If the system is responding primarily in one
mods, tbis total force will be proportional (approximately) to the product
of the displacement of the system and the modulus of the genaralised complex
stiffne6s of the mode. (This is exact for a single mass-spring-damper
ostillator, attached to a rigid base, and having the spring and damper in
parallel. A more complete treatmer of the torces on the supports of a damped
beam is-given in Chapter Vil), The r.m.s. value of-the foice is therefore
proportional td

KRi (1 2)7

'sing equation 3.26a, this becomes

M` K F6 ... (3.29a)

where F, (I) %I *-.0.29b)

Assuming once again that t 2 <C! A the efficiency criterion derived from
this expression is evidently R •- per given weight of treatment
(N.B, for convenience the resultant of the inertia and exciting forces will
be referred to simply as the "reaction force" from now on).

It may be noted that the last of the two "square-bracketed" terms of

Equation 3.29 becomes (Y/I ) , if 1 * Since this quantity must
be as large as possible to minimise the random force, W n should obviously
be as small as possible. It is therefore ;Asadvantageous for a damping
treatment to increase the natural frequency of the system, as far as these

rhaction forces are concerned. Such an increase counteracts, in some measure,
the benefits arising from tne increased damping.

The criteria and related response expressiors derived in this sectionS • are su=,arised in Table 2.
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111.4.2 ound Transmiss•ion through a Sinrle Plate Under Random Excitatiol

No9 suppcse that the finite plate of para 111.3.1 is subjected on
one side to random pressure fluctuations which give rise to a generalised
force having a spectrum which is flat (or nsarly flat), as before. The
r.m.s, sotmd pressure transmitted by one of the plate modec of vibration
to the far field on the other side will be proportional to the generalised
r.m.s, acceleration of the plate mode. The effectiveness of a damping treatment
in &tenuating the resonant component of the transmitted pressure is therefoi-e
represented by the same expression as derived above for the r.m.. cceleration.
The corresponding efficiency criterion is again the value of -* per given
weight of treatment (for small damping).

At this Juncture ýe may look in more detail at the sp~ctrum of the
random transmitted roise, which, like the generalised acceleration, is
proportional to t times the spectrum of the genera] ised displacement.
i.e. to

With lov damping, this has a pronounced peak at (or close to) the resonant
frequency (KX/MQ)1 . At zero frequency it has the value zero, but at high
frequency it approaches the value

The high frequency components of the transmitted noise are therefore affected
only by the mass of the plate. It is partly due to this feature that the mean
square pressure has the t*o 'components' derived in Equation 3.28. If the
second of the components is large compared with the first (and this may be
so even if the damning is smally provided (") has high values above the
resonart frequency) then the transmitted noisR will have a marked resonant
peak in its spec;trum without being "predominantly resonant". This point
was made in section 1.4, Chapter I.

MI.4.3 Random Sound Trarsmission thbrouc.h an Array -o.lates Subiected to
Boundar- Layer ?ressure Fluc tuations

As a further example of the different criteria which must be used
for different systems and response quantities, reference will now be made £
the work of Kraichnan (11), This considers the acoustic radiation from an
ar-ray of thin, independent, square plates on one side of which a moving
airstream exerts convected boundary layer pressxlrz fLuctuations. After -

certain simplifying assumptions have been made, expressions are developed
for the mean square radiated sound pressure (i.e. transmitted pressure)
in terms of the mean square incident pressure and plate parameters. Many
different moaes of plate vibration contribute to the total radiation.

Under longitudinal dipole excitation, which has a distributed convection
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2
velocity, the mean squere radiation pressure p> is found to be ef the form

? = ... (3.30)

< (p 2 is the mean square incident pressure, and C and 0 are constants
relating to the pressure distribution only. a is Ihe lengt of the jlate,
91-% the mass per unit area, and D A the real part of the flexural rigidity
of the plate. The expression is valid only for small values of I . The
criterion for judging the efficiency of a damping treatment in attenuating
the radiated r.m.s. sound pressure is now the value of

[ ýyi'O +- Ca _

per given value of g . (The power j is introduced to allow for the root
mean square value).

When the incident pressure fluctuations derive from, transverse dipole
excitation and a sharp convection velocity, the mean square radiation pressure
is of the form

the corresponding efficiency criterion for a 'amping treat'dent in relation to
the r.m.s. pressure being the value of P t per given ,ieight.

One of the assumptions made in the derivation of the above expressions
is that. the damping (or loss) factor, q , is the same for each of the modes
contributirg to the radiation. When the damping derives from a visco-elastic
damping treatment, this assumption is invalid for two reasons:

(a) The visco-elastic properties of the damping medium are considerably
frequency dependent, and will therefore cause variations in v?
from mode to mode on account of the different natural frequencies
involved.

(b) Constrained layer damping treatments give loss factors and fle•ural
stiffnesses which depend on the wavelength of the flexural vibration.
The treatments are designed to give optimum damping under certain
conditions of geometry and wavelength and these vonditions cannot be
satisfied by all possible modes. The extension of Kraichnan's
analysis to cover variations of damping factor and flexural stiffness
with frequency in undoubtedly beset with great difficulties.

!111.5 stiration .of Response ,Reductions from Criterion Values

From the derivations of t;Le expressions for the different criteria,
it is evident that for all the harmonic responses
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w ons ea treatmen

R esponse befcre treatment = Criterion Value

and fcr 83.1 the rand=m responses

R.M.S. Response after treatment '
R.W ,S. Response before treatment Criterion Value

Denoting the value of these fractions b. R , the percentags reduction of the

response duj to the addition of the treatment is clearly 100(1 - R%
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L CoiGg riso g Ila Diff Z.ent Unconstrained Larer Treatments

The criteria deduced in Chapter nII wil ni be used as a ba•ss for
comparing two different unconstrained layer treatments, applied uniformly to
one side of an aluminium plate undergoing flemural vibration. It wl~l be
shown that whereas one treatment may be superior in its effect when judged by
one of the criteria, another treatment may be superior when judged by another
criterion. Furthermore, one of the criteria may indicate that a given
treatment is most effective when a certain optimum quantity is used, whereas
another criterion may indicate that a different optinm quantity is required.

First of all, it is necessary to derive the equations of flexural
motion of the treated plate in terms of the normal co-ordinates, prom this
analysis, expressions must be derived for the loss factors and stiffness
ratios coiTesponding to the modes of vibration, in terms of the plate
dimensions and mate:-ial properties.

IV.I The Loss Factor and Stiffftnoe Ratio of a Flat Plate with an
Unconstrained Lyer Treatment, Vibrating in Flexural Modes

For the sake of simplicity at this stag,, we shall consider a long
narrow plate of unit width and constant thickness, vibrating in a flexural
mode essentially as a beam (see Figure 21),, The damping treatment forms auniform layer of thickness h3  on one side of the basic (metal) plate of
thickness h1 . The Young's Moauli of the tuo materials are E (1 + i jd)

and Em respectively. The damping of the basic plate will be Ignored.

If q was zero, th . would exist a neutral surface of bending, in
the plane of wgich no direct strain would exist at any time during a cycle
of ifexural vibration. The position of this surface may be found by the usual
composite beam theory. Although it no longer exists in the same physical
sense when the non-zero Id is admitted, it still forms a convenient
datum (or origin) for the transverse co-ordinate, z , and will still be
referred to as "the neutral surface".

It will be assumed that when the plate bends, transverse aections:•'• •of the plat-e-which were initially plans and perpendicular to Ase neutral

surface remain plate and perpendicular. If the curvature Zi ;4/ aX4is
now imposed upon the neutral surface without straining the aurfd-ce itself,
the x-wise strain at any point zn below the surface is

-he corresponding direct stresses in the two layers are respectively

Integrating these stresses over the -whole cross-sectional area to find the
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total direct load on the section, it is four that the real part vanishes
(by definition of the neutral surface and the una of zn ), but the imaginary
part

does not vanish. (The symbol 'dt or Im' in the lower limit position of the
integral implies integration over the sectional area of the damping or metal
layer respectively). Now if there are no externally applied direct loads nor
signifidant longitudinal inertia forces, there can at no time exist any
resultant direct load on the section, real. or imaginary. There must therefore
exipt ano, er strain and sbress system, saperimposed upon that duo to

S• "w/( X above, which annuls the non-zero imaginary loud. This other
strain system is, of course, that associated with longitudinal vibration of the
plate. By virtue, therefore, of the unsymmetric distribution of the dampingI •treatment, damping coupling exists between the flexural and longitudinal ilate
motion. Following Oberst (21), however, we shall first assume that the efi'ect

1w of this coupling on the plate flexural stiffness and damping is negligibleh
The justification for this will be seen later when the coupling effects are
included.

Next, take moments of the stresses of Equation 4.2 about the neutral
surface and equate the total (integrated) moment to the externally applied
moment, M(x, t). This yields

_4(xt) -z -2 A P,,, - JE (1 4 )1 Z C

-- + ;I)
• S .. (4.3)

in which (EI). is the total flexural rigidity of the plate as given by thecomposite beam theory. i.e.

S(E L •I . El a=IE zn A + SI z2G A .,.(4.4)
- -- n n

- , is the "flexural -loss factor" of the plate ard :h given by

When the plate vibrates under the action of the time-dependent transverse
loading p(x) 0i"t , there also exists the trmsverse inertia loading
.-tQ 6 2 wr/ t 0 being the mass per unit area of the treated plate. The
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equation of motion of the plate becomet.L, IA 0 U _ 0U6
E+

We shall consider the displacement of the plate in term3 of its normal
modes of undamped flexural motion, i.e. those modes which satisfy the
homogeneous equation 4.6 with v,) 0 • Hence we write

W ***.(4.7)

where the f's are the non-dimensional normal modes and the q's the corres-
ponding normaRl co-ordinates. The equations for the as may ow be obtained
in the usual way by substituting Equation 4.7 into 4.6, multiplying throughout
by fn and integrating over the whole length, a , of the plate. Provided
Stherenar no concentrated springs attached to the plate, the orthogonal
properties of the modes may be used to show t1 it the equation of motion
corresponding to the nth co-crdinate is indepeneent of any other co-ordinate.
i.e. no damping coupling exists between the flexural modes, and we have

t' "a. 1 "( k Ie;.I f,( j

the generalised stiffness of the plate corresponding to the uth
mode and co-ordinate is therefore

a

0

and the generalised hysteretic damping coefficient is

H (1ý 10

0

The "generalised modal loss factor", H /Kn , is simply vZ (the plate flexural
loss factor) and is Independent of the mcde of transverse vibration.

Now consider the plate before being treated, vibrating in the same
mode. The flexural rigidity is (EI)u and the mass per unit length is IA
The equation of motion in the nth co-ordinate is

Ax 4. 9 (Er), (4 d) t = )fJx(~..4u

The -atio of the generalised stiffnesses in this rvde of the treated and
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untreated olates is then

which again is independent of the mode of transverse vibratio•n , and is simply
the ratio of the flexural rigidities of the two plates.

Explicit expresqions for P and the modal loss factor for the flat
plate may now be derived using Equations 4.4 ani 4.5, Writing h./hI =
"and EdEm= e ,we find

Since (EI),, = ),/12 the stiffness ratio becomes

+ ... (4_1-)

Likewise, using Equation 4.5 and the above expressions, we find

In addition to the modal loss factor and stiffness ratio, the stress
ratio is also required in some of the criteria (see para 111.2.3). For the
unconstrained layer treatment this is simply the ratio of the distances between
the free plate surface and the neutral surface after and before treatment.
Before treatment, the distance is hl/2 . After tre&tment it is

6et + 2Zc+ T

+

The stress ratio is evidently.

We now return to consider the effect of the coupling between the
flexuralhlongitudinal motion of the damped plate. The longitudinal
displacement will be represented by the term u , which is the x-wise
displacement of the neutral surface, is a function of x, and is constant
across the section. The total strain at the point zn is now

Corresponding to this strain diztribution is the total load on the cross-
section
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mm

This reduces to

sine!

E ,r dh " , 0

Am and Ad are the total cross-sectional areas of the metal and damping layers,
and z z are the distances from their centroids to the neutral surface.

If longitudinal inertia forces are present, the x-wise derivative pf this
load must be equated to the sum of the longitudinal inertiq. loading, o Zu/ a,• ,
and a term associated with the angular acceleration of the section, S w/ xat
This term is present since the centre of gravity of the section doen not coincide
with the neutral surface. Now the natural frequencies of the flexural vibration
of practical aeroplane plates are relatively so low that both of these longitudinal
inertia loadings ax.. negligible. Proceeding on this assumption, and equating ýhe
total direct load to zero, we obtain-the relationship between Bu /ax and a'w/ax:

- .. U-17)
. *E A, + 4(I.e 0

Substituting this into Equation 4.15, multiplying by the appropriate E
and integrating the moment of the stresses over the whole sectional area, we
obtain the new relationship between the :ending moment and the curvature. After
some reduction, this becomes

M j.b) 1. ;A
+~ X2

The general form of this is similar to that of Equation 4.3, in that the
bending moment is still proportional to the curvature, and that the constant of
proportionality (the complex flexural rigicty) depends on the dimensions of tne
cross-section only together with the material properties. The equations of
motion of the plate may then be set up as before, using the same normal co-ordinates
and modes. The stiffness ratio for each mode will still be proportional to
the flexural rigidity of the plate, and the modal loss factors will still be
proportional to the plate flexural loss factor.

The first term in the large brackets of Equation 4.18 is the complex
flexural rigidity of Equation 4.3, obtained by ignoring the coupling. The second
term therefore represents the effect of the coupling. If we now put AJ/A =
(the ratio of the thicknessess of the two layers) and E M e , this second
term becomes

A ,... (4.19)

We may no.; compare the magnitude of this term with the first term of
Equation 4.18, using some typical values of 't and e . A stiff damping
treatment may have Ed = 10 'lb. in.-2 , and d = 0.35. Applied to an
aluminium olate, this gives e = 0.1. Taking 1 - 10 (a very large va'.ue),
the bracketed term of expressbn 4.11 becomes 0.06 - i O.03. It will be
smaller than thi2 for smmaler values of e or - Now the term outside the
bracket, EdAazd , m e regarded as b'.ing ¶ne $art" of the Total flex=ral
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rigidity (EI)t , and can never be greater than the total. With e o 0i1
and T = 10, it is approximately one third of (EI)t The second term
of Equation 4.16 is therefore approximately (EI) (0.02 - £ 0.01)o The
effect of the coupling on the real part of the fl•ural stiffness is therefore
to increase it by only 2% , when the large values ar'e given to e and 'V .

Considering the imaginary part of Equation 4,10 t and using the expanded
form of (El) I from Equations 4.5 and 4.4 , it caa be shown that the effect
of the coupling is to reduce it by about I3N when the same. values of e and V
are used as ibove. It is evident, therefore, that for the practical conditiono
to be dealt with in subsequent parts of this chapter, we may uze the results
of the theory in which the coupling was ignored.

IV.2 A Comparison of the Effects of !1oual Weights of Different Treatments

The treatments to be considered are two different grades of Aquaplas,
and will be referred to as Treatment A and Treatment B . They both consistS~of filled resins, different fillers being used in each case. Their properties,

as deduced from laborator7 tests on simple treated specimens at a given
temperature and frequency, arer

Treatment A Treatment B

Ed 860,000 lb.in. 1,080,000 lb.in.

0 d 0.19 0.33

Specific Gravity 1.20 1.68

Using this data, values have been obt•ained for the loss factor
and the stiffness ratio A for a uniform plate covered uniformly with
different quantities of the treatments. An aluminium plate has been considered,
having E = lO.OXe• ibr2 and a specific gravity of 2.84 . A and i are
plotted im Figaures 22 and 23, the abscissae being the weight of the treatment
as a fraction of the weight of the plate. Tue highest value of the weight ratio
(10) is not intended to represent a practical configuration, but is included
to indicate the ultimate trends.

From these values of A and i the values have been calculated of
selected criteria from the preceding chapter and these are plotted in Figures
22 to 25. It should be noticed that at this stage the nass ratio term., u ,
has been omitted from the criteria as the comparison between the two treatments
is being carried out on an equal weight basis. The effect of the mass term
will therefore be the same for both treatments and need not be included. In
bectioa IV.4 the mass effect is included in order to compare the effectzof
different amounts of the same treatment.

The criterion relating to harmonic displacement amp2!tude (RI ) is shown
in Figure 23, together with the loss factor, ' n , wich is the criterion
relating to harmonic sound pressure transritted at resonance through a finite
plate.j Figure 24 shows the criteria reating to random vibration amolitude
('( '.'d ), nd raction force ,C ' • and random transmitted boundary
layer noise (W Srf). (O is small enough here to Justify putting
F.(i ) = F (' 1 1 . Figure 25 seiows the criteria relating to the bending
str. ss at the-ree .urface of tle plate wh-en ibrating under harmonic resonant
or random conditions ( ot % -A and R `7czef L respectively).

Before conparing the curves for the two treatments, it is useful to
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observe the nature of the curves for At and * Since small amounts of
treatment add little to the plate stiffness, t is little greater than
unity at low veight ratios. As the treatment weight increases to very
large values, the flexural stiffness of the treatment about its own
principal axis becomes the dominant part of the total flexural stiffness, This

is therefore then approximately proportional to the cube of the thickness
(and weight) of the treatment, which is also evident from equation 4.13. Thestiffness ratio therefore increascs monotonically with the treatment weight.

The loss factor, % , increases linearly with treatment weight with
small amounts of treatment out passes through a maximum as the weight become s
larger. After this, it oscillates slightly and aporoaches the .svm=.totic
value of • The flenaral loss factor cannot exceed the loss factor of
the material providing the damping, as equation 4.14 shows.

Comparing now the curves for treatments A and B , it will be seen
from Figure 22 that treatment A , ý,th the smaller value of D . nevertheless
provides a higher stiffness ratio R that treatment B . This is due to
the lower density of treatment A , which therefore has a greater thickness for
a given weight of material. and a correspondingly greater second moment of area
about the neutral surface of the composite plate. This has an important bearing
upon the criteria Ri and i( v , which are shown in Figures 23 and 24.
At low treatment weights the value of each of these criteria is higher for
T reatmint B (with the superior material loss factor and Young's Modulus) than
for A . At higher treatment weights this superiority is reversed due to
treatment A providing the higher stiffness ratio. At the low treatment weights,
where the stiffness ratio is little greater than unity, the two criteria
approach the values of 1 and i respectively, and the treatment
providing the highest loss factor-- is automatically superior.

Consider now the criterion V- v- (Figure 24), relating to random
reaction forces, or to the resonant component of random transmitted sound
pressure. Since the stiffness rat•) is raised to a negative power in this
criterion, the treatment providing the lower stiffness ratio but the higher
lcss factor (treatment B) is inevitably superior over the whole weight range.
It may be seen that equation 3.19 givirg the criterion rellti,ý ýo one fo m
of coincidence tran mission, contains I - , i.e. (b• -•)z ° The
criterion K I' t may therefore be used in relation to both random teaction
forces and this form of coincidence transmission.

The criterion i (Figure 24) also shows treatment B t3 be vuperior
up to, and beyond, a weight ratio of 10 on account of the higher loss3 factor
and the very small power to which cr is raised. A maximum appears to occur
at the weight ratio of about 10, but the curves will inevitably rise at highar

(very impracticable) weight ratios on account of the positive pow-r of i
and the asymptotic nature of

The criteria relating to the zurface bending stresses (Figure 25)
follow a generally similar trend to the criteria relating to vibration
displacement amplitudes. Over the lower weight range, treatment B is
superior to A under both random and harmonic conditions, but treatrnent A
is superior under random conditions above a weight ratio of about 0.5 . This
superiority derives from the larger values of 114 i " for treatment A above
this weight, which implies smaller vibration amplitudes. The superiority
of A over B does not, however, become more mrrked as the wciCht increases
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in the same manner as exhibited by , This is due to the distance
betueen the free plate surface jnd the composite plate neutral surface being

-greater for the lower density treatment A than for B . As the weight of
treatment increases, this distance with treatmenT A becvmev increasingly1greate.r than that with B . It is this latter effect that cause4s 5K
for treatment A to -e olightly inferior to that for B throughout the weight
range desp! .e the superiority of Xj for A above a weight ratip of
about 0.75.

IV.3 • Com•.•son of Different Amounts of the Sane Treat"ent

The criteria considered in the previous section did not contain the mass
ratio zerm 9 . This was omitted since coual weiahts of aiifferent treatments
were being compared. Now a damping treatment may add considerably to the
weight of the thin plating of aeroplane structures. When considering theS~~effect on the response of var~i~ Vhe;

eecaying the quantity of a given troatment, the mass
effect mast therefore be included in the criterion used. Figure 26 shows some
of the criteria considered in the other figures, but with the anrropriate mass
ratio term included,

The criteria relating to both boundary layer noise and the noise
transmitted through a single plate increase steadily throughout the range of
weights considered, but comparison with Figure 24 shows that over the upper

part of the range the increase is due mostly (if not entirely) to the increasing
mass. The random reaction force criterion shows tat the treatments have a
imaxcimum effect upon random teaction forces at optimum treatment weights of
about 0.6 and 0.75 of the weight of the plate for treatments A and B
respectively. These compare with optimum weights of about 1.5 and 2.0
required to give maximrm values to Y for these treatz.nts.

The criterion relating to harmonic sound pressure transmitted thrm;gh a
finite plate (Q vt ) will not exihibit the maxirm shown by I alone for thesetreatmunts, but will rise steadily above a re.C7tive treatment 4ight of about
1, roughly in proportion to G ,

Equation 3.4 show,. that the harmonic displacement eriplitude, and
therefore the corresponding s,-rface bending stress are independent of Q
the relevant curves of Figures 23 Prid 25 may therefore be considered in the
present discusAion, Each of thb.se curves is monotonically increasing,
implying that increas!.-g the amount of the treatmect will always provide a
further reduction in the ampliuide of resonant vibration a=d stress, Ther.M.s. (random) displacement and stress are dependent upon the mass. ratio ,
t~e por;!sponding criteria, for the damping treatment being Q4R and

-Since 0 iv raised to a positive power, these expiessions
will s1111 increase monotonically with increasing weight of treatment.

IV.4 RC eductions Obtainabin-l Is the Treatments

We no. use the caloulated values of the criteria in conjunction with the
initial (untreated) structuoal dezpjng values of section II.6 in order to
estimate response reductions. For this we require the expressions quoted in
section i11.5, in which the mass ratio term must be included in the criteria.
The initial loss factor, - , to be taken in these expressions is 2 x the
initial damping ratio, and wfl therefore have the minimum value of 0.01 and
the maximu -value of 0.025. vji will then be 0.1 and 0.16 respectively.
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The responses havirg criterion values which increase monotonically can
obviously be reduced by any required amount if sufficient treatment is added.
We shall therefore consiaer the reductions of these r '. ises wheD the weight
of the trert.'nk-nt is 50% of the plate waight. The random reaction force
critericn, however, passes through a maximum value. The response reduction
corresponding to this value will be quoted.

The following table sets out the percentage reductions of selected
responses under the above conditions-,

Response Treatment A Treatment B

•Random Surface Stress 8l4% 1 84% 74%

Random iteattion Force 64% 40% 74% 59%

Boundary Layer Noise 80% 68% 82% 72%

FHarmonic Displacement I 96% 90% 96.5% 91%

These reductions have been obtained from the stiffness ratios and loss
factors of a simple plate with no reinforcing such as stringers and frames.
When the plate forms part of a stringer reinforced structure, the stri.ngeýrs
may contribute considerably to the total potential energ, of the coupled
plate-stringer modes of vibration. If the plate stiffness is now increased.
by the addition of the damping treatment to R times its initial stiffness,
the overall modal stiffness will increase by a smaller factor. The stiffness
ratios used above are therefore overestinates of those to be expected in
reinforced structures. Likewise, the modal loss factor increments arising
from the addition of the treatment to the plate must be less than the plate
loss factors calculated above, since the loss factor of the whole system
cannot under any circumstances be greater than that of its sub-system with
the greatest loss factor.

It follows therefore that the response reductions quoted above for the
surface stress, boundary layer noise and harmonic displacement are certainly
over-estimates of the reductions to 'e obtained on real structures. The
random inertia force reduction is a.so most prolably overestimated, -but being
proportional to the fourth root of tne stiffness, a stiffness reduction
will cause a slight response reduction. Since the fourth root is involved,
however, this is a small effect in the present argument and will not comparee
with the effect of the over-estimated loss factor. The reductions quoted
in the "Low I " columns are therefore greater than those which may be obtained
wit• real reintorced structures, and therefore set an uppeer bound to the
response reductions which can be achieved with these treatments.

IV.5 r,-_cludind. Remarks

In comparing the effectiveness of the two treatments, it has been shown
that with relatively small weights of damping treatment, the treatmenvr giving
the zreatest loss factor to the whole system is sunerior as Judged by each
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of the criteria. This follow; from tha fact that •at small rextiwý Welght s th
stiffness vnd mass increases are aeglgible fr -the pwtirula damping
configurations considered. The loss fact-oz is then the %ly warAtir w l.h
changes aporeciably when the txeatnýrrnt is added, treater •elative Neighus,
it has been shown that one treatment havia< a lover density, a 19wer st~fo~
and a lower material loss factor than .&nother can ' erte.hess be inoye
efficient (on an equal weight basis) in attenuating viLbration fisplacemnti

amplitudes and plate surface bending stresses.

The criteria relating to harmonic and random reaction forces show that
there are optimum quantities of treatment to give the greatest effects, bwt
"the optimum quantities differ for the harmonic and random conditions, if the
amount ae.tually used is mid-way between two values, (the geomitric maný, sey)
the reduction in efiectiveness below the maximum realizeable is very sligt.
The other criteria considered are all monotonically increasing with Increase
of treatment weight, imolying that increasing the amoxunt of treatment used
w.i1l always further reduce the resoonse..

The implications of these results are that when damping treatments are
being considered for use on light aluminium structures, their effectiveness
cannot be sufficiently defined by stating only the loss factor obtainable from
a given amount of the treatment, The factor by which the stiffness of th,
structure is increased must also be given. This implies that the results of
the standard Geiger test, whereby the time rate of decay of a treated steel
plate is givez as the measure of the effectzveness of the treatment, is also
Sinsufficient. This time rate of decay is (4n effect) but an alternative
form of presenting the value of the loss factor (see Kerwin (29)),

Th3 fact that a poorer quality treatment has been shown to have a
superior effect, in some instances, than one of higher quality, suggests that
the optimum design or compounding of a treatment will be different depending
on the particular vibration response quantity it is required to atte=uate.
It may be that damping treatments can be developed further along these lines,
a different treatment being designed and recommended for different
applications.

.The Inclusion of the mass and stiffness effects into the criteria for
assessing damping treatments will be more than ever important when zstpace"
damping technicaes are being considered. In these techn~iques, the darping
layer is saparated from the plate by a shear-stiff, light spacer layer. Very
large stiffness increases can then be expected for relatively small weights
kof, tre-rament,
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Chaynter V

The Damoed Sand-ich Plate_

V.1 Scone of Chanter V

This chapter presents the theory of the response -to external pressure
fluctua.4 one vf a flat, rectangular sandwich plate wit% a damped core and
simply-sx),ported edges. The eqvmtions of motion of the plate are derived,
and their solutions are found .n ter-as of a series of sinusoidal nodes of
transverse displacement. Expressions are derived for the displactment in each
mode and also for the surface stresses in the face-plates. From these are
developed expressions for the •.ss factot" and stiffness ratio for each mode.

Consideration is then given to the dependence of the modal loss factor
and the resonant and random response criteria upon the wavelength, core
thickness and core dynamic shear modulus. The optimum design df damped plates
is sought. Comparisons are made between the responses of damped sandwich
plates with different core thicknesses of optimum stiffness, and the response
of a solid plate of equal weight. A comparison is also made between the
stiffness at high and low frequencies of the two plates. It appears that
maximum damping and minimum response can only be obtained at the expense of
the static (i.e. very low frequency) stiffness. The sensitivity of the
response to effects of temperature on the core properties is also considered.

V.2 Review of Former Investigations

A theoretical analysis of t.e damping of a sandwich plate was first
conducted by Plass (23), who considered the face plates to be thin membranes
and restricted the work to a one-dimensioaal problem. In effect, therefore,
a sandwich beam was considered. No optimum design of the plate was sought.

'Ross, Keivin and Dyer (24) considered ehe damped saedwich beam with
finite thic kmss face-plates, but the core thickness war. taken to be small
compared with the face-plates. The flexural loss facto.- was the only damping
'o-arameter' discussed and was shown to be dependent on both flexural wavelength
ar.d c-.re thickness. The core damping was introduced by ascribing to the
core the complex shear modulus, G(1 + i P). The equation of motion of the
beam was not derived in this analysis.

Kurtze and Watters (25) have analysed the acoustic transmission loss
characteristics of sandwich beams and have shomn that higher flexural loss
factors can be obtained with this arrangement than with unconstrained layers.
They show, however, that the sandwich configuration is inferior to the
unconstrained treatment as far as frequency response is concerned. This
follows from the dependence of the loss factor on the flexural wavelength.

More recently, Yu (26) !.as analysed the the damping of two dimensional
flat plates, including hysteretic damping (complex moduli) in both core and
face-plates. Deriving the equations of nytion of the plate, he proceeds to
discuss the damping of the plate in terms of the logarithmic decrement for
which he obtains expressions involving the (different) loss factors of each
of the three layers. The actual response of the plate to time-dependent
loading is not considered.
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Freudenthal and Bieniik (27) have analysed the forced vibrations of
flat and curved damped sandwich plates, considering the displacement ampLitudes
excited by harmonic loading. A general respon;ýe theory is presented based
on th,.- 'normal mode' aporoach, whereby the total response is expressed as the
infinite series of the responses in the indivilual normial modes. •!o optimum
configurations are investigated, nor vre the effoev.s of varying the core
thickness or dynamic properties.

V.2 The Response of a Damped Sandwich Plate to Normal Fluctuatinp, Presse

V.2.1 Derivation of the )ifferential Eauations of Motion

The sandwich plates to be considered in this chapter are flat and
rectangular, simply supported along all four edges. Acting on the plate
are harmonic pressureswhich may vary in amplitude over the surface. The
two face-plates are of uniform and ezual thickness h1 , and have a Young's
Modulus of E . The soft core has a constant thickness h and is considerod
to be isotropic with the complex shear flodulus G = G (I ý iP) . The
following restrictions are made upon the strains and stresses within the
plate:

(i) There is no significant direct strain in the core face-plates
perpendicular to the plane of the face-plates. Both the plates
and the core therefore deflect by the same amount normal to the plate
surface.

(ii) There is no signeicant shear strain across the depth of the face-plates
i.e. Txz and Tyz in the face-plates are ignored. (See Figure 25
for the notation useca).

(iii) Direct stresses in the soft core parallel to the plate zurface are
'4ery much smaller than the stresses in the face-plates, and may
therefore be ignored.

Inertia forces associated with both normal and in-plane accelerations are
initially included, but the in-p.L-ne inertia forces (corresponding to the
usual 'rotatory' inertia effectl,. are subsequently dropped for simplicity.

Figure 25 shows the complete system of co-ordinate axes, displacements,
stresses and moments used in the analysis. It will be noticed that "
is the shear stress in the plate, whereas 'r e nd T are the sheaf
stresses in The core. No further distinctioi need be marZe here between
core and face-plate shear stresses as neither r in the core nor '•

and T in the face-plates are referred to. xz

Consider now the equilibrium of the moments, shears and normal loading
on the element h, .dx.dy of the upper face-plate. The normal loading
derives from the normal tensile (or compressive) stress in the core together
with the externally applied pressure on the outside surface. Denote the
total dovnward acting loading on the upper plate elemert by j. Acting on ]
the lower surface of this element are shear tractions of magnitude
It dx.dy and T dx.dy F For equilibrium of thest tractions and
thezloading with theyzM , M , and M moments on th-, edges of the element,
it is necessary that X

-. ~~ ~ h - a8T= .Q~i
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and since the core direct stresses, or and r , and the core x and
y inertia forces are to be neglected, 't, and It will not vary over
the depth of the core. Furthe:, v does'fiot vary ovP the core depth.
It follows that 6u/ 3z is constant across the depth and is given by

where u, and uo are the x-wiso displacements of the -mid-surfaces of the
top and tottom plates respectively. Hence

Similarly, it is shown that

-r - VI ... (5,5)

where v and v are the y-wise displacements of the top and bottom plate
mid-surjfices. Substituting from Equations 5.4 and 5.5 into Eatiin 5.1, and
replacing l4, ,M , and Mv by the =sual expressions involving w and D
(the I'ace-platefeua ri~giity) -the face-plate equation beconaes

IfZ4 +2~q 2i? WŽ + h'a

in which have been used the relationships u2 - -ul , 2= -vI . These ave

readily shown to be true (28) for the flexural modes to be considered in
this chapter. An equation similar to 5.6 holds for the bottom plate,
subjected to the total normal loading q2

Next consider the equilibrium of the plate element under the action
,if -the surface shear tractions, the edge direct -stresses and the in-plate
inertia forces. The direct stresses on the edges may be considered as
consisting of uniform stresses Ox! , O'Y (the 'mid-plane' stresses)
upon uhich are superimposed plate nding stresses deriving from M,, ,

and varying -linearly across the plate depth from zero at the mAd-plane
surface. likewise, the shear stresses on the edges consist of mid-plane shear
stresses , together with linearly varying shear stresses dexi Ting
from the NY "•ment which are zero at the nid-plane surface. For
equilibrium of the forces in the x and y directions, only the -mid--plane
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Sstresses need be considered. Vor equiJhrl-±m in the x-direction:

and -In the y-,ftrection

+ja Jvv fr .(5.8)J

The stress-stxain r-!lationships for -the pltes are ]

- E
ayi

2i

Using -these -together with E-tions 5.4 and 5.5, -the equilibrimn -eo'.it ons
5.7 and 5.8 -become

c , 2

enud

-2,.) - f• 2(1+vY ) - ,V - E% h- x py

• - .--_ _- (_ . .( .± )

Next consider the equilibrium of the direct and shear stresses normal to the
-ilate surface. Suppose the core exerts a tensile stress Oaz! on the bottom
ourface of the top plate, and a tensile stress of -a on the upper zurface

S4
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of' the bottomi yte,. MThe normOi 12ýrtia force per uatt 2Lea on eath 0: the
fare plates -is

(i. e, mzting in the Iraiez~ieto.7n ~ddltion -to Iho~se vAdin_;s~,
-Vaer w. UIn gene~al be ani external pess=u p cfx7rit) x-tating on -h

outer .,surfa;%v of -the upper plate and ugi± esase p2 (x, -y, -t, zctting on the
izottcm vux-face of' t~he -lower -plate. The total dowiiwarad acting preoure,

-~ applied exitewnmlly, -is -therefore

The .tote:_ loadings on each pla-&- are -tban

_ - ...- 5.12

-An ::2ew1 ent of the care, h.~dx..dyr is sub,1 acted -to -tho -normiL tensile --tresses
and 0T2 on its tohp ane. bottom faces, and to the trausvfezn i~r~tuie

'For equillizbrA -UI tis 3elcman, ve mutst have

Adding -B.quas.tin~s -5-L12, -5.72 mzxi 5.;13 ~, -and -patting 2fh Ac4h3  (the
-total -mas.- . er unit, zTeaf the vwhdlex-pate),7 _yl~tý

-$in-ce -thej two face -p-latds diefle~ct transverzely by -the sax-f mmoute It is

xiecesai-ar that q ,2 Hence

'52



Substituting this into Equations 5.6 and using Equations 5.4 and 5.5 yields

Dj~ 4. 2 D~ + h, + x h-)F-

Equations 5.9, 5.10 and 5.15 constitute the differential equations of motion
which must be satisfied by the displacement components Ul, vI and w when
the plate 1a vibrating under the action of the fluctuating pressure

p(x,y,t).

V.2.2 Solution of the Differenti l Equations for a Simolv Sugported
Recta-n m-lar Plate urger Harmonic Excitation

The modesof free vibration of an undamped sundwich plate with these
edge conditions are represented by

I LA cosfun nx . e

VrmSnn a_ 4 .Y C
-V = -;•-2 -%m~ ... (5.16)

- ~~" a b

Wtn n t
Sw =W .;n' -,., e

where a is the length and b is the breadth of the plate. The ratios
U :V W have specific (real) values for each mode. The forced
Rio W? a dTped plate may be represented by an infinite series of modes

of the type of Equations 5.16, bat the ratios U : V : W will not be the
same as for the natural undamped modes, and Will'Be co lex,'2Tndicating that
the displacements are not in phase with one another.

In order to find the coefficients W , (i.e. the amplitudes of
transversa motion ol the modes), first represent the pressure distribution
on the plate by the infinite series

lf -b ... ( .7

where the coefficient A. varies harmonicaly if p(xy,t) varies
harmonically. If Equations 5.16 and 5.17 are substituted into Ecuation
5.15, it is seen that the U's , V's and W's are indeperdent of the B's
C's and D's and the A's are the only coefficients of the pressure
series that are required. These are easily shown to be given by
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-P.J3thermore, the substitution of Euations 5,.6 and 5.17 into Equations 5.9•,

5.i(0 and 5.15 yields a set of equations for U_ , V , W which are

completely independent of the set for U , V_ anF' W etc. i.e. there

is no coupling between the modes of tlans~erseraisplasmnent, damping or
otherwise.

Attention will noy be restIicted to harmonic pressure fluctuations,

so that A = I AI e . Equations 5.9 and 5.10 are now used to obtain

U and F in terms of W . Notice that the third and the fourth

te~ms on th~n1eft hand sides O Equations 5.9 and 5.10 become

G•2 _ U e ;00+ I G

The terms t 2 in these will be neglected from how on. i.e. we ignore

the inertia farces in the planes of the face-plates, and so suporess the

appearance of "thickness-shear" modes in the final results. This is

justifiable so long as

2 C7, (:!M

W •t is the frequency of the 'pure thickness-shear mode' in the absence of

any coupling with the transverse motion. It will almost certainly always

be well above the frequency of the fundamental plate flexural mode for any

practical damped plate configuration, but a check should always be made to

ensure that this condition is being satisfied when calculations are made on
the basis of the subsequent theory.

Introducing the symbols J = 
I

and= t•+l . £h~h•b) ... (5.19)
n I _-v-1 2 Gc

Equations 5.9 and 5.10 yield

S= + W, i vor, (h, + h3) ... (5.20)MT1 Mnt 2b (,I + L,,,,I

and V,, + W 7rn (a, + ... (5.h13

Now using these together with Equations 5.16 and substituting into Equation

5.15, it is found that

W $('1 +ai
M, n b 4  1A Jj .. (522)

where "• 1,
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For a visco-elastic (high-polymer) core mater.-al, G will be complex and
equal to G(1 + i£ ), and t will therefore also Se complex. Furthermor'ý
E for the plates may be coMaex, but when light alloy face plates are
considered, the imaginary component may be neglected. The term within ..,,
brackets on the left hand side of Equation 5.22 may therefore be writ'en in
the form

-- ______+)'] 4R (i -&. . ... (5.23) I
+1 4H ~I + n d lent.

which equation defines the symbols and . The explicit forms of
P, and q will be considered laer, and ey will be identified as the
mo0l stiffne" ratio and loss factor respectively.

Equation 5.22 permits the evaluat.• n of all the 'generalised co-ordLnates'
W , representing the transverse displaýaments of the plate in its different
zmRes. The resonant frequency, W , of the mode mn is given by the
vanishing of the real part of the lret hand side of Equation 5.22. i.e.

The term

is proportional to the generalised stiffness of the mnth mode; $L is
proportional to the generalised mass, and

to the generalised hysteretic darping coefficient.

Now consider a single, solid plese of thickness 2h., and of Youngts
Modulus 9 , subjected to the sanma harmonic pressure loadinghp(x,y,t). In
the absence of damping, the response of this plate in the ma mode is given by

"in which
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(to be denoted by k ) is proportional to the generalised stiffness of the
solid plate. (D st~l corresponds to the plate of thickness hl). It is now
evident that the factor 'A is the ratio of the generalised stiffness of
the damped sandwich plate inihe .m mode to that of the solid plate of
thickness 2h, in the stge mode, and is therefore the 'stiffness ratio*
corresponding~to the mnn mode.

Equation 5.22 may now be written in the form

W Am . .. (5*26)

which shows clearly that T_ is the modal loss factor corresponding to the
-mth mode. The total transverse deflection of the plate at any point and
instant is

7.2.3 The Expressions for the Stiffness Ratio and the Loss Factor

The stiffness ratio I and the loss factor v9 are defined
by Equation 5.23. When the compmle, shear modulus G(l + R) is used in

mn (Equation 5.19), we may write

= '|...•52S

in which 4'n is real and contains the real part only of the core shear
modulus. i e.

S a-v)- 2 ~(..(5.29)

This is one of the most important parameters on which the sandwich plate
stiffness and damping depend. It represents, in effect, the ratio of the
direct stiffness of a length b/m of unit width of a face plate to the
real part of the shear stiffness of the zame length and width of the core.
Substituting Equation 5.28 into Equation 5.23 and separat-ng the lef't hand
side into real and imaginary parts, it is found that

12
+ (+) (= + + 62

4  + + A
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This expression for 1;-, less factor is of the same form as that derived by
Ross, Kerwin and Dyer (26), with I/ +mn equivalenq to their "shear
parameter". However, the factor (r2 + i)/(i - V ) included in 1 Mn
converts their "beamt shear parameter to a two-dimensional finite plate
shear parameter. Detailed consideration of R . and I ma will be given
later.

V.2.4 The Surface Bending Stresses in the Sandwich Plate

The total direct stress at the outer surface of one of the face-p!ates
consists of the sim of the mid-surface stress, T,_ or O" 1 , together with
the bending stress, q-bx or rbT , due to the fýace-plate rending about
its own neutral plane. At the outkr surface of the top plate the bending
stress in the x direction is

-- E,, z, + I=6X 0( i- 2) SI.Y

-Eh- r M + --

At the mid-surantce of the top plate

(I- J;;2 X a

which, from Equations 5.16, 5.20 and 5.21 becomes

gnat not2 6

Hence

+ -b

V' E h, Ir~i M4 +__ +.nr Wriiry

Notice that the stress (r is not in phase with 0-1 ,sinee
is a complex quantity. l~tis the amplitude of the V6 tess whIl--1
is of greatest importance, rathe- than its two comiponents. If only one node
of vibration (the 51nth) is being excited signficantly, the amplitude of the
corresponding total stress becomes (using Sqtiation 5.28)
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b+ 4.){T +t2 +) e(2+ ) W 4. T Miry

E' ~~( +~( + 13 _

(5.32)

The amplitude of the surface stress in a solid plate bf thickness 2hl ,
vibrating in the mode

Wn g..lr• ; •_•a b

is

(,_-v) b . b

Hence, given a sandwich plate having face plates of thickness b, and a solid
plate of thickness 21 , each vibrating in the same mode and with the same
amplitude of transversl motion, the ratio of the amplitudes of the surf iace
stresses is given by

= - ... (5.33)

U a?+J

which is the modal "stress ratios required in certiin response criteria.

V.3 The Dependence of the Plate D9namic Properties on the Wavelenw•th. Core
Thickness and Core Damming Prooert~es

V.3.1 The Stiffness Ratio and Plate Loss Factor

It 'has been shown in section V.2.3 that RI and S- depend upon
-C , f and + ' Variation of the core shear modulus,'G , changes

4' (see Eauationn 5.29), an increase of G reducing . 4_ also
depends on the ratio of the plat, thickness to the semi-warble ength
(h"(.r/b) and on ttp ratio of the lateral to longitudinal wavelength, r . A
change of the value of 4 may therefore be interpreted as a change of G
or of the lateral or longiiddinal wavelengths. From now on, the suffix
will be dropped for convenience.

Figures 28 and 29 show" 1 and vi plotted against 4' for three
different values of p , the value of X being chosen arbitrarily at 1.0.

The variation of the stiffness ratio with the extreme values of
may be explained in the follow-ig way:
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As ' decreases, the dore shear stiffness increases relative to the plate
direct stiffness and for a given transverse displacement th core shear strain
is reduced. In the limit as * -b- 0 the core shear strain vanishes and ths
bending strain distribution across a plate section corresponds with the two-
diz.ensional equivalent of "plane sections remaining plane and normal to the
neutra3 surface'°. (See Figure 30a). The neutzal surface in thA limitirg case
is the mid-plane of the whole sandwich. This accounts for the upper asymptotic
behaviour of 1 . This upper value of 1 may be derived very simply by
using for thb sandwich plate flexural rigidity the expression for

E second moment of area of unit width of both face-

S(1 - 2) plates about the mid-surface of the sandwich.

As %P increases, the relative core shear stiffness decreases and for
a given transverse displacement the core shear stress is reduced. This is
accompanied by a reduced direct stress in the mid-plane of the face-plates.
In the limit as + -. co , the core shear stress vanishes altogether and so
also do the mid-plane stresses and direct displacements (u and v) in the
face-plates. The two face-plates may then be said to be bending "independent'y
by the same amount", each plate bending about its own mid-plane as the neutral
surface. (See Figure 30b). The flexuz'al rigidity of the sandwich plate is
now equal to the sum of the flexural r.Lgidities of the two face-plates 6n their
own, and the lower asymptotic value of K may be calculated on this basis.

The explanation may be presented in an alternative form using a simple
spring-damper analogae model of the plate. The plate flexural stiffness
derived from the two parallel tsystems:

(a) The low flexural stiffness of eech plate about its own mid-plane
neutral surface, involving no mid-plane strain in the plates.

(b) The high flexural stiffness of both plates about the sandwich
mid-plane surface, involving mid-plane strains in the plates.

The t-o systems are coupled by the complex shear stiffness of the core. The
analogue of the system is shown in Figure 30c, in which k represents the
total stiffness of (a) above, k3 represents (b) and kc(I a ifi) represents the
copplex stiffness of the core. The displacement of point X represents 4 W_
and that of point Y represents U or V . Nov an increase of 4' is m
represented by an increase of k . With very high kc , therefore,
(k >> kj) the total stiffnesscat point X is nearly equal to k + k- .
With verylov kc the total stiffness hardly exceeds k aS~a

This simple analogue shows that the true nature of the mechanism of the
plate stiffness and damping centres on the coupling of one stiff system with
another flexible system by means of an elementary spring damper unit. The zz
at X represents the transverse inertia of the plate, whereas a mass at Y
may be included to represent the (omitted) lon&it-rdinal inertia of 'he plates.

Turning now to the loss factor ,, Figure 31 shows that it increa~s
in direct"proportion to low values of , but in inverse proportion to high
values of + . Maximum values of j occur in the range of & 5 to 8.Plotting K( and 1against * for other values of It , similar sets of
curves are obtained, tas different maximu values occurring at
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different values of 4 . Differentiating equation 5.31 with respect to
shows that the maxima occur when

+ (5 -03/4)"Oft

and the corresponding maximum values of the plate loss factors are

41) +- 3() +

Figure 31 shows these values of vmax plotted against the thickness ratio 4.
Within the practical range of max increases with increasing IC
At very high values of 'C , max approaches the value of / .

To explain the manner in which q varies with 41 , it is corvenient to
use the fact that the plate loss factor is proportional to the cyclic energy
dissipation divided by the maximum amount of potential energy stored in the
course of one cycle. (There are certain problems of interpretation of"U maximum potential energy" when the- strains in the face-plates are not all in
phase with one another, but the general argument that follows is unaffected by
this). At high values of I# , when the two plates bend almost independently,
the shear strain is almost equ-I to

_'+ =,I ý

(from equations 5.2 and 5.3) and is almost independent of the low core stiffness.
The energy stored in the core is porportional to 2 , so that increasing
G(decreasing +') is accompanied by a proportionate increase in the energy
stored in the core, but bry a negligible change in the face-plate energy and
total energy stored. Since the core energy dissipated is proportional to the
core energy stored, it follows that as + decreases, increases in
inverse proportion to + . On the other hand, at low values of 4' when
the shear strain in the core is very small, the shear stress is almost
independent of G and equal to that predicted by the plate theory from which
shear deformation effects h've been ignored. Since the core potential energy
is proportional to (stress) /G , the cyclic dissipation is mnversely
proportional to G and directly7 proportional to '+ . Thb maximum loss
factor occurs in the "transition region" bet-ween the two extreme forms of plate
bending. With very deep cores, the contribution of the face-plates tio ';he total
plate energy in this transition region is very small. The total plate enerzy
is nearly equal to the core energy, and the plate loss factor is therefore
nearly equal to the core loss factor.

V.3.2 The Harmonic Displacement Criterion, and the Random Surface Stress and
Reaction Force Criteria

The expressions for these criteria are, respectively,

0+R F I & jN(+,2

in which the stiffness Tatj 0 Of Equation 5.30 is to be used. The
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mass ratio, 0 , is the ratio of the mass per unit area of the sandwich plate
to that of a solid plate of thickness ..2hI and depends on the plate and
damping layer densities. Materials which could be used for dasmped sandwich
cores have densities in the region of 40% of aluminium alloy plates. The
mass of a plate having a core of thickness ThI between face-plates of
thickness hi is then (1 4 0.200) times that of a solid plate of thickness
2hI . A mass ratio of (. 0o.20r ) is therefore used.

Plotting these criteria against + , sets of curves are obtained
similar to those of Figure 29. Each curve displays the characteristic maxium
and characteristic asymptotic behaviour at high and low values of
The ha•monie displacement criterion,

3

'4[ 0 + ~2

(frori,'Fuations 5.30 and 5.31) has a maximum value of

=3 ... (5-36)

_ 8[+ 0*. 2. 21

at the value of + given by

(I -1 .(51.37)

It may be noted ýere that as f gets very large, R max approaches the
-value V1 + t) which is the maximum possible value obtainable for a
given T , assuming that a material is available having the required value
of G and the high value of I . IfF= 4, the value of (V'7).ax is
80% of its maximum possible value.

--Maximum values of the randor stress and reaction force criteria are
not readily obtained in thb - w- uay, ouing to unwieldy algebra involved
in the differentiation. Instead, it is sufficiently accurate to assume that
the maximum values occur at the value of + corresponding to the inter-
section of thp high- * and lcw- i asymptotes of the criteria. (This
technique actually gives the exact values of 4f-t for I and 14 .
See Section V.6 for the derivation of the eauation? of the asymptotes).
Using this approach, it is found that the maximum values of the rand-mi stress
criterion occur when

and the maximum values of the random reaction force criterion occur when

S~=

Figure 32 shows Iopt (i÷ j2)4 for the diffeRet criteria (from Equations

61



II

5.34, 5.37, 5.38 and 5.39) plotted against t , and shows a 'iidely diverging
requirement for the optimum value of + as T increases. 1I the core properties
are such a to give the maximum value to one of the criteria, another
criterion will not have its maximum value. Although at low -values of Vr
the valuesof %* are nearly constant, it must be remembered that since k
is proportional t8p• T (Equation 5.29), the value of G to maximize -the
criteria must decrease as T decreases.

The maximized values of IN and the random stress and reaction force
criteria are shown by the "increasing weight" curves of Figures 33 to 35. Here
it has been considered that as the core depth increases, the weight of the
whole sandwich plate increases, the face-plate thickness remaining constant.

As the core thickness decreases, each of the maximized criteria evidently
approach constant values. As the core thickness increases, the random stress
criterion and o• increase monotonically. The random reaction force
criterion increases with increasing V over the range indicated, but at higher
values of T it reaches a maximum and then decreases. These curves indicate
that if weight is no problem, the minimum response is obtained with the
thickest core and with the material having the highest loss factor,, 6 . High
material loss factors, however, are usually only obtained at the expense of
some other desirable property, e.g. a wide range of temperature and frequency
over which the high values are maintained. Further, the material with the
highest loss factor may not have the high value of G requirea to 0 ve the
optimum value of 4, in the high T range, where the criteria have their
highest values. It is possible, therefore, that a material with a low loss
factor and high G may give greater cri tetion values at high 'r than a material
with a high loss factor but with a lower G , if the latter material is being
used under non-optimum conditions.

V.4 The Optimum Design of Da.-med Sar•-wuh Plates

V.4.1 The 'Constant Weight' Theo•

In section V.3,it was assumed that as T increased, the face-plate
thickness remained constant and tbe total weight of the plate therefore
increased. The problem facing the designer of an aeroplane plate structure
which must -!ithstand intense random pressure fluctuations may De foi=mlated
thus-

"For a given weight of plate, obtain the configuration which has the
minimum random stresses, consistent with a satisfactory static stiffness".

If damped sandidch plates are to be considered here, the approach must
therefore be to consider the variation of the response criteria as tr
increases at the same time as h, decreases to maintain a constant total
weight. Decreasing the face-plate thickness imolies a reduction of the
flexural stiffness of the whole plate and in considering now the variation of
the criteria with *V , the stiffness ratio to be used must include this
effect. Suppose the weight of the whole sandwich plate is to be equal to
that of a solid plate of thickness h and density W Then the thickness
of each of the face-plates is P- and of the core the weight
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per unit area of the plate is

H-nce h,2
~0 (, ÷ /2pp

The stiffness ratio to be used in the criteria for comparing plates of equal

weight and different IC is given by

Flexural. stiff-ness of the sandwich nlate
Flexural stiffness of the solid plate of equal weight

which is readily shown to be equal to

The stress ratio, to s must also be modified for the same reason. The new

stress ratio to be used is given by:

Surface bending stress in the sandwich plate .4 Surface bending stress
in the solid -plate of equal weight., undergoing the same transverse displacement.

This is easily seen to be Cn .... (5.42)

The criteria derived in the last section must therefore be divided by

x, y and z are the powers to which the stiffness ratio, the stress ratio
and the mass ratio, respectively, are raised in the criteria. Note that this
has the effect of removing the mass Tatio from -the criteria since

(Q _c~ '/2 Since this divisor does not contain +- or )3 , the
values of 4, at hich the 'constant weight' criteria pass through their
maiimun values (for a given T ) are the swte as derived in the last section.
The corresponding maximum vdlues of the constant weight criteria (with

0.4) are shown by the "Constant Weight" curves of Figures 33,
34 ana 35? The plate loss factor, v _ , is inaffected by the decreasing
skin thickness, being dependent only upon the thickness ratio tc , aýd the
parameters %k and /3

Each of the constant weight criteria differ negligibly from the
increasing weight criteria at low values of 1 , since the face-plate
thicknesses scarcely differ. At higher values of 't , the constna.t weight
random stress and harmonic displacement criteria are less than the corresponding
increasing weight criteria, due to the reduced values of V, These criteria
pass through imximum values when t is aporoxinmtely 5 and 8 respectively. On
'.he other hand, the ra.dom reaction foree criterion, having K raised to a
negative power, benefits from the reduction of the stiffness associated with the
decreasing face-plate thickness. The constant weight criterion values are
therefore greater than the increasing weight values and, moreover, do not pasr
through a maxinum as '• increases. Yrom the point of view of this
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criterior alone, it is beneficidl to have 'e as large as possible.

Since the stiffness o6 the plate may well be of equal importance to the
dynamic resoonse characteristics embodied in the above criteria, the values
of the stiffness ratio K. =/(I+ ÷t•p/2rp)3 correspoding -to the =Uclmm
values of the criteria are plotted in -FgL-re 36. These show that below a core
thickness ratio of 1, the stiffness of a sandwich -plate designed ý maximize any
"of the criteria Js less than the stiffness of a solid plate of equal weight.
At low frequencies, or under static loading conditions, the stiffness of these
modes of displacement (on which the backling stress depends) u1ll be considerably
less than indicated by Figure 36, since the freqaený depernent shear modulus
of the core, G , is always much less at low frequencie.,; then at high frequencies.
Indeed, if the low static value of G gives a high enough value of %L-
the static stiffness ratio for the pl-ate with a very thin core becomes + (from
Equations 5.30 and 5.41) while for the plate with -5 it becus 1/32.
It is evident, therefore, that the miniim dynamic response of the sandwich
plate can only be obtained at the expense of the static stiffness if no increase
of weight is permitted.

V.4.2 The Constant Stiffness Theory

If the plate must withstand appreciable static loads in addition to the
fluctuating loads, a certain minimm static stiffness is automatically
specified by the known static loading and the degree of transverse deflection
or buckling -permitted in the plate. Suppose that this static stiffness is to
be maintained a5 the core thicknesses is varied and the response criteria are
examined.

Now under static (or lov frequenc:,3) loading conditions, the shear
mcduli of damping materia-s are usually -very smail, and creep -readily occurs.
Uuder these conditions, therefore, I is likely to be very high and
Eqaation 5.30 shows that the stiffness tatio Is -virtually independent
of • , '" and S , approaching the value - The static stiffness then
depends only upon the thickness of the face-plates, and is twice the fexr
stiffness of one of the face-p'ates. In order to maintain a constant values
of the static stiffness, therefore, it is necessary only to maintain a constant
thickness of the -face plates. The total thickness of the face-plates will be
4t times the thickness of the solid -plate having the required static stiffness.

Maximized criterion -Aalus for s-ndwich plates having Lace-plates of
constant thickness are -shown by the =increasing weight" curves of Figutes 33,
334 and 35. These have been discussed in Section V.3.2, the theory of which ray
be regarded as the "'Constant Static Stiffness Theory.. The conclusicns reached
relate to the optimum design of p2ates for a given static stiffness.

V.1.3 The Choice of -the Ontinam Core Material (Constant Weight The orv)

iIf a damped sandwich p-late is to be -used for the skin plating of an
aeropl ane structure, and is to be designed for -minimum Tandom stresses and/or
reaction forces, it will be -necessary in the first -place to know the mode (or
modes) which are likely to contribute moe. signifizantly to the total resnonse.
This is -necessary since the dixate dynamic -pro-erties depend on the modal wave-
length. Clarkszn •npd Yord (9), have fmmd fn--m tests on jet-excited aeroraene
fuselages -and tail surfaces that the significant modes are those in which
adjacent panels of stiffened plate st-ctures v.brate dn anti-phase, the semi-
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wavelength (b/m) being approxinately equal to the stringer or rib pitch. Modes
i.th effec'tive semi-wavelengths of one half of this may also be inortant. The
semi-wavelength in the other direction (a/n) is of the order of the spcing
of the stiffening in that direction. The values of r and (W/m) required in
the sandwich plate theory may therefore be determined. Now the mode ef
libration of the fitiffened plate, with adjacent panels vibrating in anti-phase,
is not tha pure sinusoidal mode assumed in the foregoing theory, due to the
restraint offered by the stiffeners. The effect of this is discussed briefly
in sectior V.5, but the optimum care properties should not be appreciably
different from those required for the sinusoidal mode.

Suppose that the mubs per unit area of the plate has been fixed at
by purely weight considerati.ons. MiniLm ranlom stresses ar6 obtained when 'r
is approximately 5 , so that the face-plate thickness h1  must be /A
assuming that p'0/ pp = 0.40. It has already been shown that 4'opt.rs -i3
considerably different from %P0t.ef , so that some compromise is necessary
if both r,*mdom stresses and reacion forces axe to be wa.Ain as smaU as
possible. As a compromise, therefore, the value of %e ptf will be taken to
be the geometric mean of these two quantities, i.e.

4 ... (5-433)

With 'r=5 ,this becomes t= 22.6 (1 2)- The corresponding

expression for the stiffness rati is then

Now suitable materials can usually be manuftctured with 1 3 1 , whence
S1.06 and op t = 32. From Eiuatinns 5.29, therefore,

G ____ 4- 1) 7

_ : 0.77 ((÷,) E1,.(.

The cere mateArial must possess this value of G at the resonant frequency
of the mode. When tbe plate modes are coupled _ith the stiffener torui r and
bending modes, this frequency vst be found by the method of Lin (2),. (see also
Clarkson (4)) adapted for sandsmclt plates. As a first approximation, however,
the plate flexural stiffness could be taken to be N( D, nhere R has the
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I
value deduced above, and Lin's method for solid plates could be rsed. If
there is negligible coupling with the stiffener3 (a very exti-eme case) the
resonant frequency will be given by

(4 = (k_ .- / (from Equation 5.24)

which, with 9, = 1.06 gives

(.~ ~ ~ c P. ('-3.(b')

V.4.4 The OztyMtu_ Design of a 6 in. Square Plate with Given Core Materials

We now consider the application of the constant
weight theory to the design of a simply supported 6 in. square sandwich plate,
the total weight fC which must be equal to that of a single 18 S.ý.G. (0.048 in.)
plate. This is representative of a skin panel on the tail-plane of a certaiin
jet-transport aeroplane. The use of two different damping materials is to b-
investigated, and the optinram core and face-nlate thicknesses determined. The
two different materials to be used are

(A) a broad temperature band material developed for sarnwich plates
(B) a soft, pressure sensitive material, as used for damp'ing tapes.

We shall consider the response criteria at one temperature only (IOOC), at which
the materials have the following properties:-

Frequency (c.p.s) 100 200 400 600 1000
Material A G 4640 6820 9900 11900 15400S~(ib.in-•)

S0.96 0.87 0.80 0.76 0.68

Material B:
* (lb.in-2 ) G 180 260 380 480 660

1.20 1.23 1.20 1.17 1.10

The specific gravity of'the two materials has been taken to be 1.0 and of the
face plates, 2.80. The Young's Modulus of the plates is 167 lb. in- 2 and
Poisson's Ratio, V , is 0.3. Thle fundamental mode of vibration only is to be
considered. Values of the stiffness ratio and the plate loss factor have been
computed for a range of values of " , the face plate thickness varyirg with
to maintain constant weight. The calculation necessarily involves a v- t•hod of
successive anoroximation, for at each value of V the natural frequency of the
plate is initially unknown. A frequency is therefore guessed, and the corresponding
values of G and /3 are used to calculate R . With this values, the
resonant frequency is estimated and then used to find improved values of G and
P and.tben an improved value of K. This process is continued until it

converges on a steady value of K . Values of i , , and the random
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recotion fmrce adr rardom surface stress criteria are then calculated. These
values are shown in figures 37 and 38.

Each cf the criteria increases with increasing 'Y until t lies
betweor. 5 and 10. Here, the criteria approach or reach maximum values. Plate
B has superior criterion values throughout since the values of 4, are much
ctozer to the optimum values than those of plate A . Purthermore, the loss
factor of material B is consistently greater than that of material A . For
plate A,• reaches a maximum value of about 0.24 at "V = 6.0 as It increases.
This value is about one seventieth of the value required to maximize
Othe other har& for plate B, ' reaches a maximum of aboutlla

Sr = 6.0 , which is about one half of fopt. I "

.The existence of the maximum values of the criteria in the region
= 5 to 10 stems mainly from the effect of the decreasing face-vlate

thickness, as It increases. Equation 5.29 shows that %k is proportional to
h t2 C /G , where h, is the thickness of the face-plates. Putting

(as in section V.4.1) it is found that h 2 has its maximum value when
AC -2 ppj• ., i.e. 5.50 in the above case. Although G also changes with
=( C due to %he change of nataral frequency), this was a small effect in the

above calculation and t4 still passed through a maximum value close to
It = 5.50. Now the equation for the low- + az-ymptote for (see section

V.6) sho-rs that when %k is much below the opt!mum value and is greater
than, say, 1.0, then the plate loss factor % is almost independent of t'

1 and is proportional t o + Under these conditions, ) passes through a
maximum, as *f passes through a maxinum.

Although material A does not appear in the above example to be as
effective as material B , at a shorter modal wavelength or with a greater
total weight its 7 effective~ess will improve. Also, if steel face-plates are
used (E = 2 x 10 lb. in.- ) with material A , the value of 4' will be
further increased and will come closer to the optimum value, giving increased
effectiveness. With these sane changes, the plate with material B will
have a value of + considerably greater than the optimum value, and theI.. effectiveness of material B will decrease. It is evident, therefore, that
each material must be examined on its merits in conjunction with the configuration
in which it is to be used, and considering also the frequency of operation.

V.5 Stress nnd Reaction Force Reductions Obtainpble Using Damned
Sa ndch Plates

A comparison is now made between the random surface stresses and the
random reaction forces in two similar plates, one of them being a damned
sandwich plate and the other being a solid plate damped only by the 'extrrameous'
mechanisms of rivet, acoustic and material dwmping. The plates are subjected
to a random loading which is assumed to excite significantly only one mode,
the sama mode for each plate. 1.he power spectral density of the corres-cnding
generalised force is assumed to be the same ay the natural frequency of each
pLeate and is assumed not to vary appreciably in the neighbourhood of these
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frequencies.

The percentage reduction of the stress and reaction force will be found
nsing the criterion va&ues in conjunction with *qi , as described in
Chapter III, section 111.5. The values of J. used in Chapter IV, section
IV./ will again be used. Taking I = 0.025 In conjunction with the
maximized low - 'T criteria values trom Figures 34 and 35 with A = 1.0, it is
found that the random surface stresses are reduced by 65% and the random
reaction forces by 73% when the solid plate is replaced by a damped sandwich
plate of equal weight and of optimum design. Taking 0.01 in conjunction
with maximized criteria values at t --5 and 10 = 1.0, e reductions become
90% and 92% for the "constant weight" condition, and 96% and 88% for the
"increasing weight" condition.

It should be remembered that the maxinrm reduction of the random stress
does not occur at the same value of + (or G) as the maximzm reduction of random
reaction force, i.e. the maximum reductions will not be obtaired at the same
temperature or frequency. If the plate is designed such that the value of 4*
is between the optimum values for the random stress and reaction force criteria,
the values of the criteria themselves may be reduced by no more than about 20%,
and the reduction quoted above will be slightly less.

When a sandwich plate is incorporated in a real structure with stringers
and frames, these flexible stiffening members will cause the stiffness ratio
and loss factor of the whole structural mode to be different from those of a
simply-supported plate vibrating in a sinusoidal mode. The overall loss factor
is likely to be .less than that of ths simple sandwich plate. The stiffness
ratio is likely to be greater than K of Equation 5.30 if this is
less than unity, and less than t if this is greater than unity. Since the
mode of plate vibration is no longer sinusoidal, it is probable that an
iterative technique will be required to determine the actual mode of vibration
in the first place, before the values of R and vZ for the whole vibratiug
configuration can be determined. This is to be the subject of fature work.

If more than one mode particip ýs in the total motion, it will not be
possible to minimize the response in more than one mode. However, it is
possible that if two modes adjacent in the frequency spectrum are excited,
the values of their response criteria could lie on either side of the peak of
the criterion: + czurve. Both values could then be close to the maximum and
the total response arising from both modes could then be minimised.

V.6 Off-Peak Values of the Criteria: Tenperatture Banwdth Factors

Mention has already been made of the asymptotes which the criteria values
approach as + becomes very large or very small. Figure 24 (and similar
curves for other criteria) show that these asymptotes give good approxirations
to the actual criterion values provided * is about ten times greater than
the optimum value, or less than one tenth of it. Now in a multi-moda. response
calculation, the loss factor and filexural stiffness (and also some of the
response criteria) corresponding to several different modes will be required,
No more than one or two low-order modes can have criteria values close to the
maximum. The loss factors and stiffness ratios for the remaining modes could
be taken to be those given by the relevant asymptote.
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Equations 5.30, 5.31 and 5.33 show that at low Values of

2 2.

-- --p

At high values of 4

2

From these expressions, equations for the criterion asymptotes may be obtained.
"Note that at low values of + , the greatest loss factor is obtained when

S= 1 but at high values of + ,I increases in proportion to A . Note,
further, that there will be a lower limit to the value of V , set by the
existence of hysteretic damping in the face plates and at the plate boundary

Sattachments. The effect of th~se damping sources has not been included in the
analysis of this chapter. The above values of v are therefore only of use
if they are considerably greater than the value der±ving from these other
sources.

Off-peak values of the criteria have also to be considered in relation
to the sensitivity of the plate response to changes of te.perature. Suppose,
in the first place, that the plate vibrates in a single mode, at the freouency
and temperature at which %& has the optimum value for a specified criterion.
Variation of the temperature changes G and /3 and hence changes 4' . TIn
criterion value changes, following a curve similar to that of Figure 24.
Sufficient change of temperature, up or down, will bring the criterion valuedow to one half of the mximum value at f. a Now in order to find theexact range of temperature over which a parotle4ar configuration with a
particular core material has criterion values greater than the half-peak values,
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it is necessary to have a complete set of curves of G and • vs. frequency

and temperature for the material. 1A the paragraphs which follow, the temperature

bandwidth is investigated in qualitative terms without such information for a

range of configurations (different values of T ), optimised according to

different criteria. Instead of an actual temperature bandwidth being found
(no sDecific core material being considered) an alternative "bandwidth factor"

has been postulated; and its dependence on I anm a has been investigated.

Despite its limitations, this work is sufficient to show that some configuraticnz-
must have a markedly buperior temperature bandwidth than others.

Supoose, firstly, that A does not change as G changes. Denote
by ''u "and 1L the values of + corresponding to the half-peak criterion
values. 1( + . and '' are the upper and lower values respmctivelyj. Now
the quotient 4/j (or "bandwidth factor") is also the c-uo tent o. the two

values of 0 giving the half-peak criterion values. Using the relevant curves
of G vs. temperature, such as Figure 21, this quotient can be interpreted as

a temperature bandwidth. Clearly, therefore, the greater the value of
the greater is the actual temperature bandwidth between which the

criterion values exceed the half-peak values.

Exact expressions for qu/4h corresponding to the plate loss factor,

I , can be obtained from Equationr.5.31 by eq-uating this to I /2 from

Equation 5.35, and solving the quadratic equation for f . We then. find

+/

11z 7411+12..(-8

2 2 ~ (~t2  4

where opt..I = + is ) 3(+3(1 + ) )).

Similarly, for the criterion , we find

- '4ObL ... (5-49)

whera
+Opt~a.,+A

-Exact expressions for f.'' for the other criteria are not obtainable in the

same way, owilg to the unwieldy algebra involved. However, from curves of the
criteria plotted against + for different values of • and j , the
bandwidth factors may be determined graphically.

Figures 39 and 40 show ths bandwidth factors for four different criteria
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plotted against the core thickness ratio for three differen't (constant) values
of 1 . The curves for i and thL- random reaction force critterion show

that there is a definite advantage in having large core thicknesses, as the
bandwidth factors increase considerably with thickness. The banduwIdxh factor
for ttv is insensitive to core thickness, and that for the random btre~s
criterion tends to be slightly less at high core thicknesses than at low. In
general, the effect of having higher core loss factors is to reduce the bandwidth
factor.

Considering now the effect of a change of both loss factor, is
and G , it will be shown that the conclusions just drawn are still valid. We
may sup-.-ose that G charges first C ~remaining constant and equal to IS,.
say) followed by the change of jG (G remaining constant). If the coab'ined effect
is to bring the criterion down to the half-p-eak value, the correspondi-ig values
of f'will differ from those abiove. Denote the new values by %k un and

4 'f'corresponding to which are the new values of the core loss factosrI
and e sallnvwassume that in the region u' to 4-n , and

'Go n ,the criterion asymptotes are sufficiently close to tlhe actual curvres
to permit deductions to b-made from them with regard to the bandwidth factors.
Under this assumption, the harm~nic and random criteria in the region of
are proportional to and respectively. i.e. to

If

For either of these to have the same (half-peak) values at 4- and /u
as at -fUand fl 1 (= the initial value of fiat 4 pt),P ~must have

m Aj 'I

Similarly, in the region of rthe harmonic and random criteria are
proport ional to

4 .Teuesf and rdrespectively.

For either of these to have the same (haltf-peak) values at a
as iat and towe Twsthave
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i.e. 1 * I

Hence q, __ )... (5-50)

This differs from +u/+, by a factor which depends only upon the AS Is and
not upon 't *The new bandwidth factor, '',must therefore
vary with 't' in the same manner as the previous fa.tr 4. ' The
deduction al-ready made with regard to the effect of '~on t1 e bandwidth
factor is th-erefore- still1 valid, within the ljints of the validity' of the
assuamptions of the argument.

It must be remembered that as G and A change with temperature
so also does 'the stiffness ratio It , And the resonaant frequency of the mode.
This f-aquency change causes a further change of G and t4 . However, the
eff.:.ct of this on G and A6 (and hence also on the response criteria) is
c,ýxtainly much less than the effect of temperatuire alone.

V.7 Conciusions Dra7t-n from Chanter V

The theory of th; -response of two-dinmnsional flat plates, with
damped cores has been devaloped. The results re--emphasize the conclusions of
Ross, Kerwin and Dyer (24~) wh-a showed in a one-di-nnsional analysis that the
loss factors of the transverse modes of vibration depend on the modal walvee-
leng th and core thickness, as well as on the core dynamic prol-rties. The
other criteria upon whichi the plate response depends have bee' found in this
paper to show a sini-lar dependence.

For any given node and core thickness, there exists an optimuir core shear
stiffness to maximize the loss factor of t;,e mode, but different optim-um
stiffnesses are required to minimize different response quantities (e.g. random
surface bending stresses, harmonic resonant d~isplacement anulitudes, etc.),
'Wih very thin cores having a material loss factor of 1 , tLhe maximum odial
loss factor is about 0.3 "cut thi-s is obta-inedo-t Vie expense of the high
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frequency stiffness of the plate which is then about one half of that of a
solid plate of equal weight. The static (i.e. low frequency)stiffness of the
sandwich plate is about one quarter of that of the solid plate, owing, to the
shear modulus of the core bein* low under static or low frequency loading
conditions. With thick cores core thickness five times that of the face-plate)
"having a material loss factor of 1, maximum plate loss factors of about 0.3
can be achieved. With a given face-plate thickness, the minimum plate
response is obtained with the thickest optimized core.

Comparisons have been made between the random responses of plates of
equal weights vibrating in the same (single) mode, but having different core
thickness: face-plate thickness ratios. The miniimum response occurs when this
ratio is about 5 : 1. The high frequency stiffness of the plate, in the given
mode, is then nearly equal to that of the solid plate of equal weight, but the
static stiffness may be as low as 1/32 nd of that of the solid plate. Although
it appears that maximum damping and minimum response can -)nly be obtained at
the expense of static stiffness, a satisfactory static stiffness right be
obtainable if lower damping could be accepted and non-optimum core shear stiff-
nesses were used.

With the large core thicknesses under optimum conditions, a rough
estimate suggests that the r.m.s. stresses and reaction forces in a zrandomly
excited sandwich plate may be about 10% of those in a solid plate of equal
weight. With the small core thicknesses this figure becomes 30 - 40%

The sensitivity of the minimized plate response to changes of the core
dynamic properties (and hence to changes of temperature) has been investigated.
Random reaction forces and the plate loss factor are less sensitive to these
changes when the core thickness is high than when it is low. Haracnic
resonant displacements and random surface stresses are equally sensitive,
or nearly so, at high and low thicknesses.
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II

Chapter VI

Harmonic Experiments on Damped Sandwich -Specimens

VI.1 Scone of Chapter VI

This chapter describes some experiments carried out on a number of
different damped sandwich specimens to measure their modal loss factors and
stiffness ratios. Some of the specimens were commercial products which were to
be assessed and others were specially made in order to check systematically
certain aspects of the theory of Chapter V. This check was confined to an
examination of the variation of X and -q with respect to both core
thickness and wavelength, for small core thicknesses only.

The measurements were made with the specimens vibrating in different
sinusoidal modes over a wide frequency' range. Ensuring that the modes were
sinusoidal presented problems in the design of the apparatus. The heavy
damping encountered with some of the strips presented problems of measurement
not hitherto encountered. These problems are discussed and their solutions are
described.

It has been concluded (with some qualification) that the results of the
'systematic check' confirm the theory of Chapter V relating to plate loss
factors and stiffness ratios.

As the commercial specimens were all of different thickness and weight,
there was little point in assessing and comparing them directly. A more useful
comparison may be made between specimens of equal weight, it being assumed that
the specimens can be manufactured in "scaled-up" or "scaled-don" forms. For
this purpose, it uas necessary to deduce the loss factors and stiffness ratios
of the scaled specimens from the values mea-sued on the specimens supplied.
A relatively rapid method has been derived for this deduction process sand is
described in a later section. Finally, the scaled-un specimens are compared on
the basis of values of the reaction force criterion.

Vi.2 The Des.gn of the Apparatus

The apparatus in which the sandwich specimen loss factors and stiffness
ratios were tUP be measured had t,. satisfy the following requirements:

(a) The specimens had to be eaii3y inserted and removed.
(b' The specimens had to vibrate in sine-modes. This was desirable

for the purposes of compari*.g one specimen with another, as
comparisons would have little meaning if the modes of libration
were different. It was necessary if the results were to be used in
conjunction with the theory of Chapter V, and if stiffness ratios
were to have any meaning.

(c) It bad to be possible to excite and measure modes of vibration having
frequencies as high as 1000 c.p.s. and as low as 50 c.p.s.

Requirement (a) was most readily satisfied by using narrow strips of the
sandwiches rather than two-dimensional plates which would need to be carrefully
at-tached all round their four edges. Accordingly, specimens were tested w.ich
were 0.30 in. wide, and about 11 in. long. F-urther, to satisfy both (a) and
(b) the specimens had to be effectively simply-supoorted at the ends and no m-asses
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could ba attached to the strip between these ends. This introduced problens
of exciti-r the vibration, the normal method of which is to add a light coil
to the stri., and to excite electro-dynamically. Likewise, a problem of
measuring the vibration arose, as suitable non-contacting vibration transducers
were not available.

To provide effectively simple supzorts at the ends, the specimens were
suspended fro'v, the "cradles" illustrated :Ln Figure 41(a). These consisted of
two vertical shim steel strips (A), 0.002 in. thick, 0.10 in. wide and about
0.5 in, long. At the top of these was soldered the brass bridge piece (B) to
which the specimen was attached by a 10 BJA. screw (c). One of the specimen
face-plates was tapped to receive this screw. The mid-surface of the specimen
intersected the vertical strips half-way up their free length. In this way,
the vertical strips imposed the minimum of rotational rbstraint upon the
specimen. At their bottom ends, the vertical strips were soldered into brass
support rods which were tightly screwed into a heavy base of 3 in. by 3 in.
steel. One of the supports incorporated a crystal force transducer (see
later paragraph) and certain necessary insulated sections. The whole assembly
was bolted on to a massive base-plate.

To excite the specimen without adding exciting coils, the metal face-
plates themselves were used as "exciting elements". Permanent magnets bolted
to the steel base created a magnetic field which cut across the specimen in
the direction perpendicular to the required direction of vibration. An
alternating current was passed through the length of the specimen, as a result
of which an oscillating loading acted on the specimen and excited the vibration.

The permanent magnets could easily be moved and "reversedb-in order to change
the direction of the magnetic field. In this way it could be arranged that
some regions of the specimen were excited in counter-phase with others, and
the excitation could be arranged to suit the particular mode of vibration
required. The alternating supply current entered the specimen via the
vertical support strips.

Measurement of the vibration was accomplished by incorporating a piezo-
electric crystal in one of the end supports, (Figure 4,6) and measurine, its
-voltage output as the oscillating load from the specimen was imposed upon it.
This oscillating load derived from the inertia loadi ng on the specimen and the
exciting loading. The two components had to be separated in order to measure
the required quantities. The technique used is explained later-.

A photograph of the whole assembly is shown in Figure 42. Some of the
pole pieces have been removed from the permanent magnets for clarityý.

.•I•-3 The Problems of Measurini the Stiffness Ratios and Hinh Modal Loss
Factors

I As some of the specimens were very highly damped (modal loss factors
of nearly 1.0), several problems arose in measuring the loss factors and
stiffness ratios. The stiffness ratio is defined (a- in chapterV, section V-2.2)
as the ratio of the generalised stiffness of the sandwich plate vibrating in a
given mode to that of a solid plate of thickness 2h, vibrating in the sa-
mode. Its experimental determination is moqt readi!y achieved by .measuring the
"T'displacement resonant frequency' ( K/MQ)-i and deducing it from this.
Accurate identificati on of this frequency was therefore required.

High modal loss factors imply low response (inertia forces) at resonence
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and the possibility of a large proportion of the total respaitse %t resonance
deriving from non-resonant modes. Further, the inertia force ext.7ted on the
support of the simply supported specimen by vibration in the rezoirant mode may
not greatly exc63-d the force due to the excitation loading. These factors
completely prohibit the use of the simple 'frequncy-responsu' cuije method to
measure either th- loss factor or the resonant frequency. However, the
Nyquist diagram teLhnique of Kennedy and Pancu (29) is well suited to the
problem and has been &dopted. The problem of the presence ofr unwanted modes ;f
tvibration was xDrther overcome by arranging the magnets of the exciting system
to produce the distribution of excitation loading which best suited the required
mode (see Figure 43). ThŽ generalised .iting forces in the unwanted modes
were then very small, if not zero.

The theory of the adaptation of the Kennedy and .Pancu method to the
present proble-m is presented in section V.4. The in-phase and quadratmure
components of the force transducer output (relative to the exciting force)
were plotted against one another to form an arc of a circle in the region of the
resonant frequency. Ideally, the larger the arc of measured -points, the greater
should be the accuracy with which the circle can be drawn. Now with a modal
loss factor of nearly one, the two quairants on either side of the resonant
frequency cover a total frequency range of about 90% of the reso.nnt frequency.
Over a range as wide as this (especially with resonant frequencies in the
500 c.p.s. region) the frequency dependence of the core dynamic shear . )dulus
might be expected to cause some variation of the modal stiffness and loss
factor. Arising from this might be some dii tortion of the INyquist diagram
from the nsual circular form and use of the dLstorned d"2 ram will result in
errors of estimating the resonant frequenc, and the loss factor. in -th
present investigation however this problenm hos beer, ignored, as the errors are
certainly quite small. Justification for ignoring the problem comes from the
results of the random experiments to be described later. The random behaviour
was first predicted on the basis of the harmonically mnasured values of stiffness
-ratio and loss factor, and satisfactory agreement wIth axperimental results
was obtained.

VI.h The Theory of the -Measurement of the lResonantYTev:-y -a --L Loss F.nctor

The method of Kvnnedy and ?ancu for analysing vibration data centred
on the vectorial representation of the displacement of the harmonically
vibrating system. In the present work, the force exerted by the vibiating
system on its support was measured. Accordingly, ye requi-e an an aysiz of
.this force vector, in order to relate the modal loss factor and resonant
frequency to the properties of the force vector diagram. (Sir-ce ',he force
exerted on the mpport is equal and opposite to the reaction at the support, from
now on we shall refer to this force us "the reaction").

SConsider a beam 9f length b which im excited by the harmonic-lly

varying loading p(y) e- . y is the length-ise co-ordinate. p(7) is
entirely real, so all -points are being excited in-bubse with, or in counter-
phase with one another, let the transverse displacement of the be=m at any point
be w&) ei4' , where v(-) may be a complex quantlty. Denoting the mass per
wLnit length ol the beamr by p/, -, the local harmonic inertia loading is

el , givin the total loadjing at a point of
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The support reaction is now

in which the limits (or constants) of integration must be adjusted according to
the boundary conditions of the beam.

We now expand w(y) as an infinite series of the normal modes ,-f
vibration of the beam, i.e.

ti=I -F y

i"ItThe generalised displacement, Wn = e , corresponding to the nth nor:n-al
mode satisfies the Cenerdlised equatioa of motion
!b

S • MnWN + K,.(I + ; ).Wn () {,al e

,. say.

From this we have

W . .

(K, Mn z TIM

arn the total support reaction is

{ . J. r)- ... (6.3)

The amplitude of the component of this which is in-phase with the exciting

loading is

Q I . o(K'- CkA ? ) ... (6.4)
= (K' -) Z

Likewise, the quadrature component amplitude is

1 = - 77



i i I
mI

Consider now the Argand diagram obtained by plottihg R against 4 for
different values of w . The existence of the frequency independent term
I p(y)dy in the expression for R shows immediately that there must be a

'displaced origin' from which the frequency dependent components of the vectors
radiate, even if thereis only one significant term in the infinite series. The
total reaction vector consists, therefore, of a constant component deriving from
the externally applied loading together with the frequency dependent components
from the inertia forces.

-.•1owRing-Mnnedy and Pancu. we examine next the frequency-dependent
vector corresponding to just one of the mndes, the rthsay. Now it is known
thatkif the stiffness 'and damping do not vary with .frequency, then the tip of
the vector of the generalised disilacement

.~ (KV.. i) -me

traces out a circle of diameter Pr/Kr§lr , with the centre on the imaginary
axis, At any freque cy, w , the amplitude of the corresponding inercia force
vector is If dy- times this. The argument of the vector is unchanged. It
can easily be shown that the tip of the inertia force vector still traces out
a circle, but the axis of the circle (i.e. the diameter which passes through the
origin of the inertia force axes) is inclined to the imaginary axis by

tanl (see rigure 44) . ': diameter of the circle is

which is the maximum amplitude of the inertia force corresponding to the rth
mode, and occurs at the frequency

= co~. ( + .~i)...(6.7)

r is the "displacement resonant frequency", (K./4

Suppose it is possible in a practical investigation to arrange the
loading, p(y) , such that the generalised forces in all but one preferred mode
(the rth) are small. In the neighbourhood of wr the inertia forces from

all modas but the rth will be very small. In th~s region the tip of the total
measured reaction vector then traces out a circular arc, and a circle can be
drawn through the measured points.

For various practical reasons, the magnitude of J p(y)dy will probablv
"not be known. As it is not possible in drawing the circle to rely upon
measured values of the reaction at very low frequencies, (down to zero), the
precise location of the origin 0i will not be known. This means that neither
of the frequencies 14 and w ri can readily b identified from the circle
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that has been drawn. Kemuedy and Pancu overcame their similar problem of
identi~ng Wr by considering the derivative ds/d(? 2 ). (s = length of
arc, M = (:/-r)5. This had a maximum value at W= W The same

property holds for the reaction vector diagram. Denoting tfe lze-th of its
arc by sr , we can ph.ow that

--.(_ 1) )z ... (6.8)

which has a maximum value at ni = 1 , i.e. at W * Insaction of this
expression, and practical experience, show that with large values of Ir
this derivative does not change sufficiently in the neighbourhood of W to
permit an accurate identification of the fiequency 4r . An alternativemethod of determining w r is therefore reqiired.

The frequency. which can be determined most accurately from the vector
diagram is W , at which the imaginary component of the inzi-tia force
vector of one mode has its maximum value; The corresponding point in the circle
lies on the diameter which is parallel to the imaginary axis, and is the•'efcre
very easily lo~ated. Differentiating the rth term of the serias for ' with
respect to u ý and equating the derivative to zero shows tlh-it

When Yfl has been determined, w r is quickly found from G3 * can
be fou•1dfrm the vector diagram in several different ways. Earh of these
depends essentially on the relationship between '" and the angle subtended
at the circle centre by certain pairs of points on the circle. Consider first
the rate of change with respect to w of the real part of the inertia force
vector at the frequency w . The real part of the vector is given by

1m

K- ... .(from Son. 6.4) ... (6.lO))
1 

7 2

from which we find-
LA4 (1 +i2r 2Diviing his I

Dividing this by the diameter of the circle, d , from equation 6.6 ai,. iesing
6.9, we have

_____ __ ____________(6.11)
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Now each of the terms comprising the left hand side are very easily obtained
from the vector diagram, once a good circle has been dzawn. Evaluating the
left hand side using the measured data, the corresponding value of Yj r may
be found from the further relationship:

11 T ='z '(IC) ... .(6.12)

Alternatively, the curve of fl( Ir) vs. Ir on Figure 4j mY be used.

Notice that when •. is small, f(1(1r .2/-?.. Using this
approximation, the error in estimating Ir is no greater than 6% when Ir
is 0.5.

This method of determining • depends, in effect, upon the
relationship between i, and the angle subtended at the centre of the circle
by an element. of arc of 3length" d , situated at the point corresponding
to W . Alternatively, It may be recognised as an adaptation of the

phase-c)ange method' of measurIng damping, described elsewhere by the author(16).

The other methods to be used all depend on measuring the frequencies
corresponding to certain pairs of points on the circle which subtend right
angles at the centre. The points 6oncerned are indicated on Figrte 44. T*nree
pairs of points are considered since the vector diagrams from different
experiments had their best-defined arcs in different positions. Some of the
experiments yielded arcs which extended beyond the quadrants on both sides of
point M , but this was not always the case.

Point M corresponds to the frequency to M The points are to be
"pai7ed as follows:

Point A (Wa 4 wm) together with point M; wM - Wa = Oam*

Point B (wb >0m) together with point M; Lb - =

Point C (w e 4 wm) together with point D (&)d > Wm ;

d c , cd

Notice that both D and C together VLIth p^-T',z M subtend an angle of
450 at the centre.

The following relationships can be established between Ir and the
above frequency intervals:

iA

S...(6.13)
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S@..(6.15)

wthere Ir+ -g&r4

These functions are plotted against vj in Figure 45 , and my be usdd
directly to find Ir corresponding-to inown values of A / m " I

We have now established methods of measuring the (hig7h) modal loss
factor, j , and the displacement resonant frequency w The use of these
methods is escribed in the next sections of this chapter. r

VI.5 Details of the Specimens sn.I Electronic A2Mratus

VI.5.1 The Specimens

Three different commercial sandwich specimens were tested and also four
other specimens which had been made in the laboratory. The commerical specimens
were:

(a) "IHycadampW, manufactured by Fireproof Tanks, Ltd., having a core of
tough nitrile rubber.

(b) IDynadamp", manufactured by the Lcrd Manufacturing Co. (U.S.A.). This
had a core of soft synthetic rubber which Iad been specially developed
to have a broad temperature and frequency range over which it maintained
its damping properties.

(c) An experimental sample manufactured by Farbwerke Hoechst (Germany) with
a soft, broEA-temperature band core material of unspecified composition.
This material was developed by Dr. H. Oberst. The specimen will
therefore be referreO to as 'Oberst's Specimen'.

Each specimen had aluminium alloy face-plates. Dimensions of the cores and
-face plates are given in Table III together with measured values of the face-
plate Young's MHo U.

The other specirns had cores built up from layers of an adhesive
damping film manufactured by the 3M's Go. for use in damping tape configurations.
These layers were sandwiched between strips of 20 S.W.G. aluminium alloy plate.
Specimens were made -ith one, two, three and four layers of the film. They
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will therefore be referred to as 3MI, 3M2 etc. The manufacturers supplied
some data concerning the dynamic shear modulus, and this is given in
Table III together with measured values of the face-plate Young's Moduli.

VI.5.2 The Electronic Ammaratus

The apparatus required for exciting the specimens consisted of a
Solartron L.F. Oscillator which was connected to a power amplifier via a
variable attenuator. The current output from the amplifier was passed
through a step-down transformer the secondary winding of which was then
connected to the ends of the specimen. In this way an alternating current
o f up to 10 amps could be passed through the specimen, which was thereby
subjected to an oscillating loading proportional to and in phase with the
current flowing.

The oscillator frequency could be varied in increments of 0.1 c.p.s.
up to 100 c.p.s., and of 1 c.p.s. up.to 1110 c.p.s. The accuracy of the
signal frequency was stated to be within 2% of the indicated value.

The supply current to the specimen was measured by measuring the
voltage drop across one of the supply leads to the specimen. A Solartron
Valve Voltmeter was used for this purpose. This voltage was also required as
the phase reference with respect to which the components of the reaction
transducer signal were to be measured. These components were directly
indicated on a Solartron 'Resolved Components Indicator" when both of the
voltage signals were supplied to it.

Considerable care had to be taken to avoid picking up mains hum on the
lead from the high impedance reaction transducer to the Resolved Compbnents
Indicator. Careful shielding of the transducer and connections in the lead
were required, together with the use of low-noise shielded cable.

VI.6 Details of the Exoeriments Conducted

VI.6.1 Phase Calibration of the Reaction Transducer

The accurate determination of the frequency &a from the response"diagram of the measured points depends on the accuratem knowledge of the

phase relationship between the excitig force and the support reaction. It
therefore had to be verified that the reaction transducer signal was in
phase with the force exerted on the support. If not, the p-.se relationship
had to be measured. Phase shift here can be minimised by having a very high
input i-mpedance in the apparatus to which the reaction transducer was
connected. The Resolved Components Indicator had an input impedance of more
than 50 Megohms, but this was insufficient to prevent some measurable phase
shift at frequencies below 200 c.p.s.

The phase calibration was carried out as follows:

"An aluminium strip was inserted in the testing apparatus and was
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excited at its resonant frequency by means of a very small coil attached to its
mid-span position, The coil was free to move in a magnetic field and car-ried
an alternating current. An oscillating inertia force now acted on the support,
together vith one half of 1-he exciting force. Since the damning ratios of tne
modes of vibration were very low (less than 0.001) the inertia force
greatly exceeded the half of the exciting force.

The magnets on the apparatus which ware normally used for excitation
purposes now provided a magnetic field which could be used for velocity
measuring purposes. Since the specimen was vibrating in their magnetic field,
an Alternating voltage was developed across the ends of the specimen which was
proportional to and in phase with the harmonic velocity of the specimen. The
inertia force exerted on the supmort was in quadrature with this signal. Since
the inertia force greatly exceeded the exciting force the harmonic force
applied to the support was in almost exact quadrature with the voltage signal.
The output signal from the reaction transducer was then conpared (phase-wise)
with this other signal, using the Reolved Components Indicator. The m"asured
phase difference was attributed to the phase difference between the force apolied
to the reaction transducer and the voltage output.

Four different strips were used, each having different thicknesses.
They were excited in their fundarnýnttj and second overtone modes, permitting
phase measurements 5o be made at eight frequencies from 28 c.p.s. to 850 c.p.s.

VI.6.2 Tests on the Snecimen Supoorts

The supports were required to provide end conditions as close to
"simply-supported" as possible. This was checked by mounting a 20 S.W.G. strip
in the apparatus and measuring the natural frequencies of the first five
flexural modes. As the damping of the strip was very low, the natural
frequency was taken to be equal to t he frequency for maximum amplitude of
the reaction signal.

The measured frequencies were compared with the frequencies calculate'd
for the first five modes of a truly simply-supported strip of the same dimensions
and mechanical properties as the tested strip.

VI.6.3 Tests on the Sanr.wich Speci"e.ns

Each specimen was tested in tt÷e same way. Having been fixed into the
testing apparatus, the oscillating current was supplied and kept at a constant
level while the frequency was changed. At each frequency setting, the to
components of the reaction transducer output signal were measured.

To excite the specimens in their fundamental modes, the five magncts
along the length were arranged to give magnetic fluxes in the sane direction.
To excite the first overtone, only four magnets were used. Two adjacent magnets
acted in the same direction, opposite to that of the other pair. The secord,
third and fourth overtones were also excited in turn with the appropriate
magnet arrangemrnt. Where possible, the magnets were fixed as close as possible

to the modal anti-nodes.

With each new magnet arrangement, the frequency range was quickly scanned
in order to locate approximately the appropriate resonance. That the mode excited
was the required mode could be ascertained by running a pencil tip along the
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vibrating specimen. The n'urber and locations of the nodes could then easily
be identified by touch. De hailed m-!asurements of the reaction transducer
signal were than taken and tLe response diagram was plotted immediately.
"In this way, the necessary frequency increments could be gauged and taken at once.

A recorC was kspt of the ambient temperature throughout the tests which

were carried out between 210C and 2300.

V1,6.4 Measurement of E of the Face-Pletes

Some spare specimens were split apart and one of the face-plates from
each was tested to measure the Young's Modulus. This was carried out either
in a standard terisile testing machine, with an extensometer attached to the
specimen, or by supporting the specimen on knife-edges at its tnds, placing
small weights on the beam at the centre and measuring the central deflection uwith
a travelling microscope. In each case, E was deduced from +he slope of the
load-def3,ection curve.

The results of these tests have already been presented in Table II
of specimen data.

'11.7 Results

'Vl.7.1 The Phase Calibration

The phase lag of the reaction transducer signal behind the applied force
is shown on Figure 46. Above 200 c.p.s., this is less than 20 and ,ras found to
have no substantial effect. upon the resonant frequencies and loss factors
subsequently measured from the response diagrams.

Below 200 c.p.s., tne phase lag increases steadily in the manner
characteristic of piezo-electric transducers. At 30 c.p.s., however, the phase
lag is still only 100.

fV1.7.2 The Suonort Conditions

The measured and calculated natural. frequencies of the 20 S.W.G. strip
are shown below.

First Second Third Fourth
Mode Fun?.mental Overtone Overtone Overtone Overtone

:..Measured eFrequency 28.35 :r3 2 46 446 678

'•--• alculated

[cFrequeney 28.4 1U3.6 255 454 710
,• C.D.s.

If any signficant rotational restraint had existed at the supports, the
measured natural frequencies would have been greater than the calculated values
and the ifrecuency of the fundamental mode would have, been affected more than
the frequencies of the other modes. It is evidenut, therefore, that there was
virtually no rotational restraint at the end of the strip, and that one of the
design requirements for the supports was satisfia.fd.
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That the measured frequencies of the higher modes were lower than the
calculated frequencies may be attributed in part to the effect of the roýational
inertia of the end-support, but most (it is thought) to the effect of slight
flexibility of the supports in their longituinatl direction.

VI.-7.3 The Responte Di2LMs

Some typical response diagrams obtained from the tests are shown in
Figures 47 and 48. It will be noticed that very good cireular diagrams vere
obtained over the whole frequency range considered, from .0 c.p.s. to over
1000 c.p.s. A unique circular arc could usually be drawn through the measured
pointe from each test, the arc sometimes extending over a semi-circle or more.
Some of the sets of measurements, however yielded only veiy small arcs {e.g.
Figure 48a), but it was usually possibly to identily clearly a frequency w
and to measure a corresponding modal loss factor. m

The Dynadamp specimen yielded a 'compressed" circular diagram,
characteristic of systems having non-linear damping which increases with
amplitude (Figure 48b). A loss factor can be deduced from the circular arc
drawn through the points closest to W but it is difficult to place mauch
confidence in its exact value or sigaficance. The results would have had more
physical signficance (but little more practical value) had the test been
conducted at constant amplitude of displacement, the components of the exciting
force (current) being measured at different frequencies with reference to the
reaction signal. The reciprocal of the new "complexl exciting force should be
+tken, and its real and imaginary parts plotted against one another. This
should yield a circular diag-ram from which may be obtained a loss factor and
frequency to which correspond with the particular amplitude of vibration
of the test. m

Another observed pecularity in the measured diagrams was the "secondary"
mode at about 196.6 c.p.s. on Figure M~c. This was a very lightly damoed mode
whbich was detected at, or close to this frequency on most of the specimens.
Its origin could not be traced, but it was not associated with flexural
distortion of the specimens as its damping was much too low. The measured loss
factor for the "primary' mode at 170 - l]tn c.p.s. was measured by both the
"dIR/as method" and the I A4am method". Identical results were obtained from
both methods, giving confidence that the presence of the secondary mode did nct
affect the measurement of the loss factor of the primary mode.

VI.7.4 Dcrived Results

The methods of section VI.L were used to deduce from the response
diagrar.sa the values of w for ecch resonant mode and the corresponding
modal loss factors. The vaILucS of tr were then used to calculate the
moial stiffness ratios in the following simple manner:

A solid plate of thickness 2h. vibrates in the rth mode. Denote theS~corresponding generalised stiffness dhi itss by K ahnd M . Tne co--resnondi-Z4Sdisplacement resonant frequency (0)r)solid , Is equal to (K/M)½- . UT.en "the

sandwich plate vibrates in the same mode, the gencralised stiffness and mass are
given by R K and 94 (by definition of the stiffness and mass ratios). Corres-
ponding to these is the displacement resonant frequency, wr, given by

85IRX/Oi (w... (6.16)
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From this, we have

W *... (6.17)

0 was derived from the known weight of the specimen. ( i d) s was
calculated using the known expressions for the natural frequ~n~ s of a simply
suoported tniform beam of thickness 2h, . The valuo of h, taken was the
face-plate thickness of the particular specimen being consiaered. The
stiffness ratio evaluated was therefore that defined in Chapter V, section V.2.2.
These stiffness ratio may be described as being "relative to" the stiffness ofa plate having twice the thickness of the face-plate of the particular

specimen.

The values of R and I derived from the response diagrams are
tabulated in Table V and are plotted on Figures 49-52 with the frequency W r
as the abscissa. The frequency abscissa has been chosen as it is a near
equivalent to a 4' abscissa. Since %P is a function of both G and
wavelength, it is also a function of frequency. As the frequency increases, so
also does +, . The frequency abscissa is also convenient for purposes to be
described in Section VI.9.

From any one specimen, values of Q and can be found only at the
discrete, resonant frequencies. The values of P. and indicated by the
curves between these frequencies therefore appertain to specimens of other
lengths.

The modal loss factors and stiffness ratios obtained as above may be
used to deduce the corresponding values of G and A for the core material.
Equations 5.30 and 5.31 (Chapter V) were first solved simultaneously to give
%ý (- GTl) and A in terms of V. and v . Substituting the measured values
of R and into these relationships yielded t•he corresponding values of G
and P . These values were assigned to the frequency Wr , but it is
clearly an arbitraty matter as to uether they should be assigned to Wma ,

9r or to any other intermediate frequency. F-u-rther, since It and • were
obtained from data covering a fairly wide frequency range, the values o0 G
and 4 computee from them must be of the nature of "weighted average" values
over that range. They should not, however, differ signfica.Aly from the
true values. The comnuted -values of G and F are plotted on Figures 54-56.

VI.8 Discussion of Results

VI.8.1 The Results from the 3MIS Specimens

The experimental values of 1 and are shown on Figures 49 and 50
together with theoretical values that were calculated using the damping material
properties listed in section VI.5.1. In calculating the theoretical values,
the expressions for R and I of Equations 5.30 and 5.31 (Chapter V) were used.
These expressions, which were derived for the two-dimensional plate theory,
were adapted to the one-dimensional strip conditions by using

-V ..866.S)
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This is thý limiting value of 4 as r - co, the const eained modulus
E/(l - V ) being replaced by the unconstrained moduluwS EI

Comparison of the experimental and theoretical values shows good
agreement in the gerferal trends and orders of magnitude, but tlh ecneriental
values are mostly greater than the theoretin!L values. This is more pronounced
with the larger thiluiesses of the core.

In seeking an explanation for this discrepancy, consideration must first

be given to the assumptions of tho theory and to the conditions of the tests.

The most important approximation in the theory that could influence the
results is the neglecting of inertia forces in the planes of the face-p-ates.
However, it was shown that this was justified provided a certain inequality wis
satisfied (see Section V.2.2), and this was, in fact, adequately satisfied by

each of the specimens at all the frequencies of test. The conditions of .he
tests that .-v ld cause the experimental and theoretical results to diffe: are
the conditlous at the supports. However, the results of the tests on th"
supports (Section VI.7.2) suggcsLei that measured frequencies, and hence

measured stiffness ratio, should be- slightly less that theoretical values,
whereas the stiffness ratios of thn, sandýich specimens were greater than the
theoretical v alues.

The most sigflcant clue to the root of the discrepancy lies in the
fact that some of the measured loss factors exceed the maximum values that can
theoretically be achieved with th- particular core thicknesses and with the
values of A given by the manufacturer. (See Equation 5.35 for the mn, mum
lo.ýs factor). This can only be explained by admitting the possibility that the
properties of the material used in the tests differed from the data supplied.
The same explanation was offered b7 Ross, Kerwin and Dyer (26) who found
discrepancies between their measurad and theoretical loss factors of thick
bars treated with damping tape. They pointed out that there can be a wide
scatter in the measured values of G and • of nominally identical
specimens of the material selected from different batches. This, it was
believed, was sufficient to account for their discrepancies which were greater
in proportion than those found in our sandwich tests.

Consider now the measured and theoretical values of sh7wn on
Figure 53, where I is blotted against the core t~ickness tor each of the
modes. It is to be noticed that the maximum measured values of I are
greater than the theoretical maximum values, that they occur at greater
values of T , and that the values of q for mode I are slightly less
than the theoretical values. Each of these characteristics can be attributed
to the values of G and A for the core in the tested specimens being

greater than the values assumed in the calculation of the theoretical values.
Justification for this statement has been found from a stady of the extensive

-- calculaations "undertaken for Chapter V, in which values of 14 and I were

c miputed for wide ranges of G , j and 't .

The values of G and 13 which were derived from the measured values
of V- and ,t (as described in Section VI.7.4) 'iere found to be consistently
greater than the manufacturer's data, further conrirming the validity of the
exolanation offered above.

It may be concluded that the experimental results discussed in this
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section confirm the theory of Chapter V for small core thicknesses (in
particular the theory of Sections V-.22 and V.2.3), after due allowance has been
made for the core properties differing from the manufacturer's data.

VI.8.2 The Results from the Cormmercial Specp• iJ

At this stage there is little poi.nt in comparing the values of A and
for the different specimens, as the weights of each were different. Some
comments are warranted, however, on the variation of R and i with frequcncy.

Figure 52 shows that the maximuiim loss factor of Ohprst's specimen occurs
at about 40c c.p.s., and over the frequency range cove-red in the tests does not
drop by more than 10% below its maximum vaLue. If the I ss factor alone was
the criterion for judging the damping effectiveness of the speciven, we could
conclude that the specimen was ideal for uie in aeroplane structures, since
the peak in the jet noise spectrom usually occars rear the 400 c.p.s. peak in
the loss factor curve. On the other hand, the stiffness ratio d'ýOps quite
rapidly with increasing frequency over the -.-hole range, and at '/00 c.p.s. is
about one sixth of the value at 60 c.p.s. Arising from this, it is found that
the criterion RI has its riazimiu value below 60 c.p.s. ard drops by about 25%
oveT t~e _requgnc rang,, whereas 'he reaction force criterion,
K +-f( '-)-2f() has its a.ximum value above 800 c.p.s. and drops by
about h0% over the range. These resu ts further emphasize that caution must
always be ener!As-d when considerLig :tlaims made for a damping treatment which
are based solely on the magnitude of the loss factor.

The loss factor of the Hycadavj specimen is seen to increase steadily
with increasing frequency, and there is little indication of the approach of a
maxim•m value-. The inertia force criterion increases even moe rapidly with
frequency. So far as is kne.m t Ithe author, the Hycadamp configuration was
reached by guesswork rather then by systematic analysis and design. UingI
a systematic alproach, as outlined. in Chapter V, higher loss factors and
criterion values could be obtointd, having maximum values closer to the regions
of most intense excitation. In its present form, Hycadamp apnears to be quite
suitable for the attenuation of high frequency transmitted boundary layer noise.

The Dynadarm loss factors vary very little over th-- frequency range
covered. The ',alues indicated on Figure 52 were measured at. low amplitudes of
vibration, and different values could be obtained at larger amplitudes. A
comprehensive study of thi non-linearity was not undertaken. The results that
are indicated therefore give only an order of magnitude for the Dynadamp loss
factors, but this is suMficient to show that they are considerably smaller than
tthose of the other specimens.

Vi.9 Methods of Comnarin; the Commreial Svecimens

IV!.9.1 Direct Oomoarison of the Existing Specimens

The different specimens may be compared after values of the criteria
have been determined from the measured values of R and * The stiffness
ratios must first be modified since the values quoted for each specimen are
relative to the stiffness of a plate having twice the thickness of the face-
plate (hI) of the particular specimen. When used in criteria for comparing
one specamen with another, they must all be relative to the stiffnesb of a
"5szandard" 1nIte of a given thickness (= hr say). The quoted stiffness ratios
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must therefore be multiplied by (2h,/hr)3 . Since the specimens have different
weights per unit area, the mass ratid term must be included in tue criterion
expressions.

Comparisons can only be made between criterion values correspording to
the same mode (i.e. the same wavelength) of vibration. Otherwise, they have no
meaning.

VI.9.2 Comparison of Specimens of Egudl Weinht

We shall not proceed with the details of a comparison along the above
lines, as the differences between the weights of the various specimens were so
large as to dpnrive the comparison of practical value. A more useful comparison
can be ma'. ween the specimens if their thicknesses are all scaled to make
them of e 4eight, or as near to equal weight as possible, bearing in mind
that the -- j-plates are only cbtairable in S.W.G. sizes. New; values uast first
be estimated for ; and I of these new soecimens. These new values can be
calculated using the method outlined and used in Chapter V, section V.4.4. G
and t.=st be known over the frequency range of interest, so the values
deduced from the harmonic test results (Section V1.7.4) may be used.

The successive anproximation method of section V.4.+ can be a tedious
process if V, and v are required for a number of modes and different specimens.
A much more rapid method may be used if approximate values of I? and I are
sufficient and if the scaled soecimens have the same core thickness ratios as
the originals. Briefly, the method consists of taking the curves of R and 'r
vs. frnquency for the original specimen and translating them laterally (in
the frequency direction) by an amount which depends on the thickness scalin'
factor. The loss factor curve is also translated vertically. In these new
positions, the curves give the values .of the stiffness ratio and loss factor
for the scaled specimen. The details of the method and its justification will
now be developed.

Two sandwich specimens, A and B, have the same core material and core
thickness ratios but different face-pnlate thicknesses, (h 5nd , say). The
dynamic flexaural stiffnesses are proportional to V, (f)a 3 anQ " b(f)hb3

respe-tively, the ýL(f)'s being the frequency dependgnt stiffness ratios.
Sup-ose that values of K (f) are known for a range of frequencies, and values
of V. are requireda.

The stiffness ratios are functions of the non-dimensional quantities 'T ,
-' and t3 (see Equation 5.30). + is a function of freallency, since it

depends on hhe modal wavelength and on the frequency dependent shear modulus.
Suppose that it has the value Ia when specizen A vibrates at the resonant
frequency fa in the corresponding mode of wavelength X . At this stage
of the argument we permit the lengths of the two specimens to be d.fferent, such
that there exists for scecimen B a mode of wavelength b and resonant frequency [f fb for which 41b = a"

We now suppose that 3 is not signficantly different at the two
frequencies f and f . Since ' is the same for both plates, and so
also is a a it follows that the two plates have the same stiffness ratios
at the frequencies f a ad fbSaan

Let the values of G at these two frequencies be G and Gb .
a b
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Equating the values of • for the two specimens at the two frequenzies, and
cancelling out the equal terms, we have

Ga.,

or

II- .(6.19)

We shall now express X_/0b and G /Gb in terms of the frequency ratio
-fa/fb - The resonant frequencies are proportional to

/Flexural stiffness
Mass x Wavelength4

Since the mass is proportional to the faceplate thickness, we have

SNb

At these two frequencies Rafa = • b(fb) Hence

_~ ~ aa bio

b Or 12 .j~ __ ... (6*2o)

which relates the wavelength ratio to the frequency ratio.

Over limited frequency ranges, it is possible to relate the shear
mcdulus, G , and the frequency by the simple law

n usumally has a fractional value, and is easily found from a log-log plot
of G vs. frequency. We therefore have

which relates the G ratio to the frequency ratio.
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S bstituting equations 6.21 and 6,20 into aquation 6.19 now yields

± - *..(6.22)

This equation relates the frequencies of the Vwj Specimens at which their
stiffness ratios are equal. The ratio is seen to be independent of the
absolute frequency and dbpends only upon thc ratio of the thicknesses of the
two specimens (i.e. the "scaling factor"). If , a(f) is plotted against
log(frequency), the curve for R (f) is obtained simply by "laterally trans-
lating" the whole curve 041f R a "rigidly" in the frequency direction.

Consider now the loss factors vT and lb of the two specimens
at the two frequencies f and f . Te expression for the loss factor
(Equation 5.31) may be written in the form

+3 3(1 + ... (6.21)

If , 'C and • have the same values for plate A at ifrequency f asfor plate B at frequency fb IUhnclal = I b - alae rabs s ' lateral
translation rule may then be used as before to derive the curve of I b vs.
frequency from the citrve of la *

Now allou A to change slightly from L at f to (b at fb"
If the change is small, we can ignore its effect iA the denominator of the
right hand side of Equation 6.23, and assume that the whole right hand side
still has the same valuiu for the two plates at the two frequacies fa and
fb . We then have

This implies that not only i.j a lateral translation of the Va curve
required to obtain Ub bat also a vertical translation correspondin to thefactcr P1(3 a * This factor is not necessarily the same for all frcquencies,

These translation rules have been used to obtain the curves of 1 and
for a scaled-up specimen of Hycadamp from the curves for the original specimen.
The value of the scaling factor, hý/h_ , was taken to be 1.81, which meant
that the scaled specimen had the same Oeight as the Dy..adamp specimen, The
values.9f G derived from the experimental results showed G to be proportionel
to -fO. . The curves obtained by the method are shown on Figure 55.togetl.er
with those for the scaled specimen calculated by the accurate successive
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approximation method described in section V..44.

There is very good agreement between the curves of I obtained by the
two methods. The curves for S do not agree so well, bat are sufficiently
close for practical purposes. Tba differences here have been traced to the
accumulation of errors due to the anproximations in the lateral translation
method.

The ialues of 1Z found in this way are still relative to the stiffness
of a plate having twice the thickness of the face-plate of the scaled specimen,
and must be modified (as described in section VI.9.1) before being used for
comparing one specimen with another. For comparison purposes it is most
convenient if the "standard" plate (of thickness h ) has the same weight as
the scaled specimens. The stiffness ratios relativE to this plate are then the
"Constant Weight" ratios, It , defined in section V.4.1. Values of these
for the three commercial specimns are plotted vs. frequency on Figure 56.

The next stage of tie comparison process must be to determine the values

of Zc and for sV-cimens tif equal weight, vibrating in modes of the
same waveYengyth. As the r onax.x frequencies corresponding to these modes will
(in general) be different for each specimen, the values of Iw cannot be
read directly off the curvee of Figure 56 as they stand. However, a simplegraphical construction may be devised to do this, as followsi

Suppose the resonant frequency of the standard plate is fr when
vibrating in thi gilen mode. The resonant eency of a scaled specimen in
this mode is f g2 f . i.e. V = fI/f 2 . If the curve of

/f2 vs. f is now "uperi•mosed on 1e curves of 1. vs. f of Figure 56,
the iitarsection points will give both the resonant frequencies and stiffness
! ratios of the scaled specimens. If ths K cs. f carves are plotted on a
log-log scale, then the curve of f,/f• vs. f is simply a straight line of
Sslope = 2 passing through the point I = and f = fr "

VI.9.3 Comparison of the Reaction Force Criteria for the Scaled Commercial
Snecirmens

The values of 9 and % found from Figure 56 can now be used
to compare the three comn-ercial specimens, scaled to be equal in weight to the
Dynadamp specimen and vibrating with thj same wavel-ng~h. Values of the
random reaction force criterion, )z - ( +I )-t. f ) , have been
calculated and are shown on Figure 57.

There is evidently little to choose between ilycadamp and Oberst's
specimen at small wavelengths, but as the wavelength increases, so also does
the superiority of Oberst's specimen. The Dynadamp specimen is markedly
inferior to the other two over the -whole wavelength range. It must be remembered,
however, that the Dynademp speci-men showed non-linear characteristics in the
Sharmonic tests and that higher loss factors and lower stiffness ratios might
have b-een obtained at higher amnpitude levels. 'Even so, the random reaction
force criterion values would not be expected to increase sufficiently to
approach those of the other two specimens.

The random vibration theory, which was used to crive the expressions for
the criteria, assumed that the vibrating system was essentially linear. The"non-linearity of the Dynad&,p specimen means that the significance of itsranaom criterion values is therefore open to doubt. However, the results of

92



I

the random experiments to be described in Chapter VIII suggest that the
specimen is by no means greatly misrepresented by quoting 'linear' criterion
values based on harmonically measured loss factors and stiffness ratios.

VI.lO Conclusions Drawn from Chauter VI

It is considered that the apparatus developed for testing the specimens
has adequately satisfied the requirements laid down in Section VI.2, viz. ease
of insertion of specimens, sinusoidal modes of vibration, and frequency range
of testing from 50 c.p.s, to 1000 c.o.s. The different techniques of measuring
the damping have given results consistent amongst themselves, which fact suggests
their reliability.

The loss factors and stiffness ratios measured on the laboratory-!rde
specimens were found to vary with core thickness and wavelength in the nranner
predicted by the theory of Chapter V. There were small magnitude differences
between the measured values and the values predicted by the theory incorporating
the manufacturer's data for the core properties. The differences were

consistent with the given data having lower values than realised by the core
material in the specimens.

The loss factor of Oberst's specimen had a maximum value of nearly 1.0 at

a frequency of 4O0 c.p.s., and did not drop by more than 10% of this betwueen
80 c.p.s. and 1000 c.p.s. A thinner specimen of the same proportions would have
its maximum loss factor at a higher frequency. The loss factor of the Hycadamp
specimen increased steadily over the frequency range from 0.06 at 60 c.p.s. to

0.5 at 900 c.p.s. The loss factor of the Dynadanp specimen varied between 0.04
and 0.06 over the frequency range from 80 C.o.S. to 1200 c.p.s.

The stiffness ratios of each specimen dropped steadily with increasing
frequency, Oberst's specimen showing the most marked variation of from 3 to
0.54 between 60 c.p.s. and 700 c.p.s. The effect of this was to move the peak
values of some criteria to low frequency regions and of others to high frequency
regions.

A quick method has been devised whereby the measured loss factors and
stiffness ratios of one specimen may be used to deduce the values for another
specimen having the same core thickness ratio but different face-plate thickness.
By way of illustrating the method, the three commercial specimens have been
compared on the assumption that two of them can be scaled-up to make then equal
in weight to the Dynad&mp specimen. Under the scaled conditions, Oberst's specimen
maintained its superiority over the others when judged by the random reaction
force criterion. The maximum value of this criterion occurred at a much higher
frequency than that rcarresponding to the former maximum loss factor.
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Chanter VII

The Random Vibration of a Heavily-Damped Beam

VII.l The Purtpose and Sco2e of the Chapter

The random vibration theory on which parts of chapter III were based was
essRntially a small-damping theory. Since the last chapter has shown that
plate loss factors of up to 1.0 are now realizable, the random theory needs to
be re-examined to include the effects of large damping. It is the purpose of
this chapter, therefore, t6: initiate such a re-examination. A comprehensive
study is not undertaken, as this chapter (and the next) are intended rather as
appendices to the main body of the report. For this reason, the different
stages of the theory that is presented are not all discussed and developed as
fully as possible, but lines for future investigation are pointed out.

The theory is confined to the evaluation of the total force exerted on
one of the supports of a randomly-excited, heavily-damped beam. Certain
restrictions are made which effectively limit the applicability of the
results obtained to the simplest of vibrating beams, but these restrictions could
be removed to generalise the analysis. The important features of the methoa
and the important parameters governinrg the response are nevertheless clearly
shown. Also disclosed are the conditions under which the reaction force
criterion is valid, in the form in which it was derived in chapter III.

The approach that is used may be developed to stvady the randomly-
varying bending moments and bending stresses in the beam. Ultimately it nay be
used to deal with the random vibrations of plates and reinforced structures.

VII.2 Approaches to the Problem

The usual method of analysing the response of a finite beam or plate
to random loading is that of Powell (12). In this, the motion of the system is
analysed in terms of the normal modes of flexural vibration. To find the force
exerted at a point within the system, (say, on a support) it is necessary
firstly to find the force exerted when the system is displaced by unit amount
in each normal mode in turn. When the actual magnitudes of the modal
displacements are known, the total force on the support can be found by summing
the "modal" components of force.

So far, of course, this is the accepted method of dealing with
harmonidally-excited vibration. When the excitation is random, tne problem
is to find the spectrum of the total force. Powell shows that this consists of
the sum of the spectra of the modal components of force, togetber with certain
"cross-spectrum" terms which must be included to allow for the correlation
between the modal components. The cross-spectra are difficult terms to evaluate,
and appear to become increasingly important as the damping increases.

The number of normal modes that needs to be considered in the analysis
depends, of course, upon the accuracy with which the final answer is re:uired.
It depends on the damping (the higher the damping, the more modes are required),
on the spectrum of the exciting loading (the broader the spectrum, the moremodes are excited) and on the ability of the different modes to accept energy
from the exciting loading.
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An alternative method of analysing the random response may be developed
from Williams' method of calculating the trar.sient response of aeroolane
structures to gust and landing loads (30). In this, the force within the
system is expressed is the sum of two sets of forces:

(a) the force produced at the point by the instantaneous system of
external forces, assuming these had built up slowly to their
instantaneous values

(b) the force produced at the point by the instantaneous system 2 inertia
forces acting on the system.

Set (a) can be found by the usual methods of static stress analysis. Set (b)
can be found in terms of a series of "modal inertia forces", the dynamic
response of each mode again having to be analysed. Williams showed that using
this approach fewer modes had to be considered in the analysis than in the
former method for the same degree of accuracy.

It is a straightforward step to apply to this method the mathematical
techniques used by Powell to solve the general random problem. in this waey it
will be shown in this chapter than the spectrum of the force on a supnort is

* equal to the sum of the spectra of the forces exerted there by the external
forces and the modal inertia forces, together with cross-spe'tral terms deriving
:.rom the correlation betwven the inertia and external forces. These cross-

s --.tra terms are of a slightly simpler form than those of Powell's anal~sis.

Williams' method has been adopted as it still aopears to offer more
oraid convergence (i.e. requires consideration of fewer modes) than the method

Powell when the damping is high and the loading is continuous end random.
A proof of this statement is not given in this chapter, being one of the
features scheduled for future investigation. However, there should be no
essential problem in iksing Williams' original proof, almost as it stands.

VII.3 The Reaction at a Sunnort of q Paendomly Vibrating Beam with He =N Denign

VII.3.1 The Power Snectral Density under a General Loading

The beam considered in Section VI.4 is now excited by a distributed
loading, p(y,t), which varies randomly with respect to both space and tine.
It is required to estimate the power spectral density, and hence the mean square
value of the total force exerted on the support by the external loading together
with the inertia forces of the response.

In Lhe analysis of the random loading and response we shall use the
method of generalised harmonic analysis as used by Powell and others. To find
the power spectral density of a randomly varying quantity, q( ;), we first find
its Fourier Transform, ' (io), which is defined by the relationship

qT
-r-

The power spectral density is then given by the relationship

M I ... (7.2)
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and the mean square value of the quantity by

Let the local transverse acceleration of the beam at the point y
be *(y, t). The local inertia loading is -p*(y, t). Together with the
externally applied loading, this gives a total force on a support of

in which the limits of integration depend on the boundary ccnditions of the
beam. As before. we shall call this total for'3e "the reactione, Let the
part of it deriving from p(y,t) be denoted Iy P (t) , i.e.

0

Ttly P p(ýrt) ay .. 75

The displacement of the beam, w(y,t), will 'nw be expressed by the
series of normal modes of vibration of the beam, a- in section VI./, i.e.

_o that the local acceleration mey be written in the form

The generalised displacement and ,.cceleration satisfy the equation

MW~ + W

Damping coupling of the normal modes is therefore excluded.

The Reaction now becomes

1(To40) WO (J)j~~ )A

and its Fourier transform is

- Y
Here .. .and .. are the transforms of %.(t) and W
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Now the transforms of the generalised displacement ("f (i'J)),
generalised acceleration, ( (i),and general-ised force are

4 related by

V

Puitting (Kb- ti 00 I. -. 2, .. 7

into equation 7.10 and then substititting. into equation 7.9 yields

-I--- ..... (7+.. 32)

2n

To find the power spectral density of L(t), we now use equation 7.2, which
giv~es

i

Lo rJL. .3)'I

the asterisk denoting the complex conjugate.

On substituting r4 (iw) into this from equation .12, and denoting

the power spectral 4ensities of Po(t) and Pn(t) by Jtpo(w) and
Spn(w), we find

Lm +Z1 1 1~f') (y 4

+ ua T- E2 WIJff,,G)p

The first term on the right hand side is simply the power spectral density of
the force, P (t) , exerted on the support by the external loading. The
second term (&he first series) is the sum of the individual power spectral
densities of the modal inertia forces acting on the support. The third teerm
(the second series) represents the contribution to the total power spectrum
due to the fact that the inertia forces in each mode are correlated to some
degree with the force exerted by the exterinal loading. The final, double
series represents the contrilxtion due to the fact that the inertia forces in
one mode are correlated to some degree with those in another ode.
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vj.
As this chapter is intended mainly to be an introduction to the method

of analysis but also to be sufficient to deal with the simple vibrating
system of Chapter VIII, we shall now restrict attention to vibration in which
the inertia forces in one mode are very much gr-eater than those in all1 other
modes. This would occur in practice, for examp..e, if a plate were excited
under coincidence conditions in one of its modes. The expression for the
power spectral density of the reaction is now greatly simplified. From the
first two series, only the terms corresponding to the significant mode are
required, and the final double series may be disregarded altogether. This is
cz ot to say, of course, that in general the final series can be ignored. It
will certainly be important when there are significant inertia forces present
from each of two modes which have close natural frequencies. The higher theS~damping, the less-close need the frequencies be fcr the series to be important.

However, a detailed study of it must be left to a later date, using the ideas
of Lin (31) who has studied a similar series, without the W4 termg and with
light damping.

IWe now consider in detail the terms which remain in the equation for the

power spectral density of the reaction:
4the

L0) = I [ I )A+ I'
2 17,Q,) .. Umr11• f 0 6J 0

I~~~ _z.-,,. ,' + ., (7"15)i

GenerjQl expressions will first be obtained for the spectral densities
PCO(A ) , Apn( w) and for a cross-spectra' density whi~ch emerges from the

Sthird term. O~dng to their complicated nature when the excitation is of the
• ~most general kind, these general expressions will then be reduced to a much

simpler form corresponding to a special simple loading.

The first term, in Equation 7.15 is given by

-+T +'r

= ', o%•% e~l,:, ,d:",,,-•o•• t .. °.(7.16)

Multiplying the integrals together to form a quadruple integral, re-arranging
the order of integration and introducing the variables Yl, y2, tl, t2 to
indicate the order of integration, this becomes

2 Y 

T

n r. e si wl fth seral densities
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Now put tl-t 2 = T The inner integral

is recognised as the cross-correlation function between the pressures at the
points yl, Y2 with the time delay .

The power spectral density of P%(t) now redaces to

A C

is the important "cross power spectral density" of the pressures at yl and

72 . The above equation, (which defines 1pc(w ) and ( ) shows that
in general it is a complex quantity. When Y! = y 2 , the J MSagfary termvanishes and leaves a real term which is the power spectral density of the
local pressure. The real part of the cross power spectral density is the
"cosine transform" of the •ross-correlation function and the imaginary part
is (-i) times the sine transform.

The cross power spectral density can be noe-dimensionalised by dividing
it by the square root of the product of the power spectral densities of the
pressures at yl and y2 . Denote these (spectral densities) by IP(Yl,& )
and Ip(y 2 ,w ). There is no need for a suffix 'c" or wsw, as the sine trtnsform
is nowv identically zero. Non-dimensionalising in this way, we get:

C' (Y, ,PY 114) = ' W) o..(7.21)

and

(c - ics) has been called the "correlation spectrum" of the pressures at thetwo points. The real part of it is identical to th narTow-band correlation
coefficient between the pressures at the two points.

Using the above notation, it can be showr than Equation 7.19 reduces
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finally to the form

I

The imaginary term does not appearos it vsshes in the double y-viseintegration - as it rust do, for APO (w ) is essentially a real quantity.

Consider now the second term in Equation 7.15. The same type of
analysis as above may be used to show that the power spectral density of the
generalised force, "n(w) , is given by

-C. ) 7.4
S0 0

The third term in Equation 7.15 is the most complicated of them all.
Whereas only the cosine transform of the cross-correlation function
contributes to I;, (&) and J (4) , the sine transform and the cosine
transform contribute to the thirnterm. It can be shown that

Urn G )S(=I
r:-4 T-a PC

C ... (7.25)

A similar expression holds; zrz Li 14 (71.0 C ~

Evaluating the whole of the third term of Equation 7.15 yilds:

+ .n. (31)J 1. CS

t sWe have now obtained detailed expressions for each of the component
terms of the Dower snectral density o." the beam reaction, as given 1q Equation7.15. For general loading distributions, the evaluation of these exoressions

for the whole frequency range poses a problem of great complexity. Fortunately7,
some (but not all) of them need only be evaluated over limited irequency regions,
outside which their magnitudes are not important.
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In the remainder of this chapter attention will be concentTated on
particularly simple loading distributions.

VII.3.2 The Power Spectral Detnsity with a Specia- Loading. Diseibution

Suppose now that the external loading is of the form

t . (7.27)

where p (,• i- the instantaneous pressure at the point yo , and Y (y) is
a non-•i-densional pressure distribution function. Crudely speaking, the
pressurm at all points are now in phase with one another but the amplitudas
at -11 points asn be different.

The overall cor-elation coefficient between pressures at any two
points is unity, and the correlation spectrum is entirely real with unit
value for all frequencies and pairs of points. This effects great simplifications
in the loading dayendent terms of the reaction power spectrum.

Equation 7.23 reduces to

Equation 7.24 reduces to

3) ... (7.29)

The double integral in Equation 7.26 that contains Cs(Yl,Y2 ,w5) vanishes,

while the other reduces to

Noticethat = Y
00~ ftf,

Each of these terms is now proportional to the power spectral density of the
pressure at y_ . As derived above, they will be used for the calculationsinvolved in Ghapter VIII.

"The loading distribution assumed above is one extreme form in which
unit correlation is maintained over tle whole beam. At the other extreme
is the condition when the correlation xalls off to zero in a very short length
compared with that of the wavelength of the mode f (y) . The analysis with
this distribution can be ddalt with quite simply (though not as simply as the
unit correlation ease) but will nct be considered here, This is another feature
to be left for future study.

With the loading distribution of the form given by Equation 7.27?, the
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power spectral density of the reaction (Equation 7.15) becomes

+ Yi liz

In this, all the Y's are independent of frequency. This. is only true fj, the

partinularly simple loading distribution with unit correlation over the beam.

'111.3.3 The Mean Scuare Reaction at the Support due to the Si~ecial LoadinK.

The mean square reaction is found by integrating the power spectral

density c-ver the whole frequency range from to = 0 to infinity (see Equation
7.3).

On integrating tt -first term of Equation 7.31 we obtain Yo timns the

mean square value of the loading at Yo

ja P OD06 P.>(7.32)

in which p. is the mean square value of the loading at the point y 0

Integrating the second and third terms of Equaticn 7.31 yields integrals

of the form

The integration of this has been discussed by the author in a -revious paper (32),

but only for the case of small damping. Hcvever, irrespective of the size of

the damping, it can be shown to be identical to_

2~

4• M 2•. (7-33)

To evaluate the integrals contained within this expression, we now

made the usual assumption that 11 ,(yo 3 w) does not vary appreciably with 0

in the region of the resonant peak 1/1 Zn1 and that the greater pa.t
of each integ&ml come.s from this region of the resonant peak. There is
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Sample justification for this when the damping is light, but much less when the
danmping in heavy. However, we shall concern ourselves only with the orders

3 •of magnitude of the integrals and the assumption then becomes reasonable.
Suppose the value of (yo , w ) at the resonant frequency W =
is .4 ( w) (dropping Z&e "y^ for convenience). On the above assumpt on
we canPnow say

~~ ... (7.34)

and

The integrals in this final form can be evaluated exactly, provided that
nK and , (contained within Zn) do not vary with frequency. If they da,

numerical ntegration is the cnly method of evaluation.

The exact integrals are found to be

and- I t.f 1..(.6-7 1'= _ _ _ _ _ _ _ _

These now enable us to find the total m'p square reaction, ýI; > )dj,

from Equation 7.31. Putting Kn = n , we finally obtain

~P >
:I l ) : <p•> <C > + F

+ 2.v EJ#')- ,1f • .A. •.-, (<Jm2I-r
n < ~>

< 2
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The first term on the right hand side of this equation is s.,mply
the mean square value of the force exerted on the support by the external
loading. The second term is the mean square value of the inertiu force
exerted on the support by virtue of the motion of the beam in the nth mode.
The third term allow.s for the fact that these two forces are correlated vith
one another and increases with increasing damping.

The necessity for this third "correlation term" may be seen by-
recognising the total reaction as the sum of two randomly varying vector
quantities. The mean square value of the total vector is the mean square
value of the modulus of the vector. This, of cotirse, is not equal just to the
sum of the moduli of the individual vectors, but to this sum together with
another quantity which depends on the phase (i.e. degree of correlation)
between the two vectors.

To assess the relative magnitudes of the different term= of Equation 7.38,
it is convenient to re-arrange it into the form

+ <1,2> 2 n

rY frn(~k 2-J4~ + 2.(739

in whioh Yno does not appear, having been replaced by Ym. Yo!: in the
course of the re-arrangement.

Now the part of Euraation 7.39 which is independent of the spectral

density, 4 (wn) , can be shown to vanish ' dentically when the excitation
constibatspsa "normal loading'. (See Section VII 3.-4. The spectrum-dependent
term then becomes al!oimportant. Under other loading conditions the term will
not vanish, and the magnitude of the non-dimensional factor

n 0..(7.40)

in the other term then plays an important oart in estab] !thing the relative
imD-rtance of the two terms. As +tis factor f'requently appears in random
vibration theory of this type (e.g. az in reference 3.,) some typical valuez I
of Jt are considered belcw in section VTI4.. Without considering specific
modes tnd !-ding distribations, no more conclusions can be drawn about the
relative valus of the terms in Equation 7.39. In the next chapter, calculaticns

are carried out on the basis of this theory for a special system, and the
relative importance of the terms is seen.

Another non-dimpnsional term may be identified in Equation'7.39 after

dividing through by Yo0 , v.

i.2 = say. .(d)

104.



I : |pI

This term is probably peculiar to the prasent partiaulir problem and will not

be discussed here.

Using the symbols ' and ? permits Fquation 7.38 to be written in the

form:

<0> <~>o~ +. 13 +X J 2 2-1

or in the alternative form corresponding to Equation 7.39:

<21y ( .9)2 'A iJ4 F~..i+j 11

..(7.4-3)

VII-3-4 gji on o a Random 'Norma3Y Loading,

A "norml. loading is one whici' at all points on the structure is

proportýional to the inertia loading corresponding to one of the normal modes
of the structure. i.e.

Using this to find the Y's , and remembering that

it is found that • = i , and that the whole of Equation 7.39 or 7.43 reduces

to the form

Ir 0

.k
: ... (7... )

wuh-ich is actually identical to the square of Equation 3.29 'Chpter M) from

which the reactien force criterion was derived. The derivation in this chapter

serves to emphasize the conditions under which tih reaction force criterion fw

assessing damping treatments is strictly reliable, vis. Vhen Ibe excitatin

constitutes a normal loading, when the inertia forces of just one mode
predominate and when the pon:er spectral density of the loading does not vary

anpreciably in the region of the resonant neak of the excited mode.
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VII.4 Tyical Va-ues of the Baramn er X_

Attention was drawn in section V.I.3,3 to the non-dimensional parameter ?,
defLned by

12\

its magnitude can be visualised by considering a typical spectrum, PP
such as that illustrated in Figure 5, or in the diagram below:

(0 FREOUEt4C? A

The mean squarG pressure, (p 2) , is proportional to the total area under the
curve, while the term V 0(0 - On is proportional to the area within the
rectangle OABC . If the spectrum is fairly smooth (i.e. if it has no sharp,
high peaks) it is evident that V will be small if w n is at the low
frequency end. if the spectrum does contain high peaks, one of which occurs
at tn , then ? can have a high value. Some typical values of this
parameter are quoted below, having been derived from the (smooth) spectra
of the noise pressures from an Avon jet engine. Some of these values are used
in Chaptrr VIII.

iI

Sf (= 2 xwn) Condition

200 0.14 Minimum value, close to jet
200 1.21 Maximum value, clgse to jet

500 0.15 Minimum value, close to jet
500 0.60 Maximum value, far from jet

1 1000 0.30 Xin3 zum value, close to jet
1000 0.54 MaxLmum value, far from jet

The maxim and minimum values were found from data relating to several different
jet speeds and locations around the jet.

In the near-field of a jet engine, the noise pressure distribution does
not conform to the simple form of Equation 7.27, so that some doubt msy be
expressed as to the validity of quoting these values of X in the present
context. However, over distancas which are representative of fuselage panel
dimensions, the narrow-band pressure correlation coefficie,.ts do not drop much
below a value of 1. This suggests that the quoted values of V(- can justifiably
be considered here.



Less justification can be offered for quoting values of X corresponding

to boundary layer pressure fluctuations, but it is useful to bear in mind the
values which it can take. In view of the nature of the boundary layer
pressure spectrum, (see section 1.3.Z), it is evident that

With fn 500 c.p.s, and fcut-off = 6000 c.p.s. (as in Figure 6),

this gives X = 0.13.

VII.5 Concludina Remarks

The first part of the analysis of this chapter has re-emphasized
the complexity of calculating the response spectrum of even the simplest beam
subjected to a general random loading. However, if the loading distribution
is ot a simple form, a relatively simple expression may be derived for the
mean square response. The expression for this that has been developed in this
chapter has disclosed the importance of

(a) a contributory term to the mean square response which increse with
increasing damping, and which deriveq from the correlation between the
random excitation and the random inertia forces,

(b) the loading parameter, X . •3r _

The expressicn for the mean square response was derived on the assumption

that:

(i) the power spectral density of the exciting loading did not vary
appreciably Li the region of the resonant frequency of the system

(ii) that- the damping and stiffness of the system were not frequency
dependent.

The extent of the region referred to in (i) depends on the damping. The
higher the dampin&, the wider is the region, and the less is the lilelihood
of assumption (i) being satisfied. Further, if the high damping has been

achieved by incorporating a polymeric material in the system, its presence
and nature will ansure that the stiffness and dampirng are freqruency devendent,I so violating assumption (ii). The error incurred in the theoretical mean
square response due to the violation of these two assumptions '.n only be
investigated in particular cases, but it is conceivable that iU will be of the

same order as that incurred by omitting the large dampirng corrdction factors
discussed in para. 111.4.1.
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Chapter VIII,

Exerirments on Sandwich Beams Under Random Excitation

VIII.l Purno-se and Scope of the Chapter

As several important assumptions have been made in the random vibration
theory of Chapter VII, it is to be expected that the theory can only give
approxi mte values of the mean square response. It is therefore desirable to
investigate the accuracy with which the theory can in fact predict the random
response under real conditions. It is the purpose of this chapter to describe
such an investimat'ion in which the sandwich specimens and the test rig of
Chapter VI were used with random excitation. The r.m.s. reaction at the
support was measured and its value is compared in this chapter wJth values
predicted -y the random theory of Chapter VII, using the loss factors and
resonant frequencies measured in the harmonic tests of Chapter VI. A
comparison of the specimens on the basis of the simple random reaction force
criterion is itself to be compared with a comparison based on the measured
values of the random reaction.

VIII.2 The General Method of the Investigation

Each - the o- Chapt-er VI was excited in the same test rig
as before by a randomly varying current. The response cf Uhe specimens was
arranged to ta predominantly in the second mode by the appropriate disposition
of the magnets on the rig. The spectrum of the exciting current (force) was
adjusted such that the values of X( (Equation 7.40) corresponding to the
frequencies of the second modes were of the order of 0.7, i.e. approximately
mid-wa•y between the two values quoted mu Section VII.4 for = 200 c.p.s.
Under shese conditions the r.m.s. value of the random react. signal wasS~measured for a given r~m.s, value of the exciting current.

The theoretical prediction of the random reaction may legitimately be
based on the theory of Chapter VII as the specimen test conditions "iatisfied
the loading condition of Eqtution 7.27 (unit correlation of loading all over
the beam) and the "uni-modal condition" of Section VII.3.1. The uaintities
which must be known for the prediction are shown in Equation 7.38 to be:

(a) 'Zn and 'Ro ; these are to be taken from the harmonic test resUlts
of' Chapter ýI.

(b) <p 2 > ; this was proportional to the mean square exciting current.

(c) 1tC(Wn); this was proportional to the spectral density of the
exmciting current.

(d) 1 (y) , implicit in the YVC ; this was proportional to the distribution

along the specimen length of the magnetic flux cutting the specimen.

(e) f n y) ; this has been assumed to be of the form sin 2ryib .

Measurements of (b), (a) and (d) had therefore to be made. Further, the
constants of proportionality between the exciting current and the local
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loadink and also between the reaction force and the reaction voltage signal
had to be determined.

In actual fact, the theoretical prediction in this chiptel yields the
r.ut..s. value of the random reaction signal produced by known excitation

V •conditions. This quantity is ecmpared with the measured r.m.s. reaction
signal.

VIII.3 Details of the Exuerimentg

VIII.3.1 The Anuaratus

The sandwich specimens and the test rig have been fully des-ribed in
Chapter VI. In these random tests four magnets were stationed at approxiirately
- and J, 5/8 and 7/8 of the beam length from one end. The flux due to each of
the first pair acted in the same direction, opposite to that due to the
second pair.

The exciting current was supplied by a power amplifier driven by a
random-noise signal ger •rator. As the spectrum of this signal was virtually
flat up to and beyond 30 kc/s, it had to be shaped to concentrate the signal
energf in the lower audio-frequency iange. Accordingly, a Cawkell adjustable
filter was used, set to pass frequencies between 2 c.p.s. and 700 c.p.s. E.ith
this setting, the value of X- for the exciting current had the prescribed value
of 0.1 (approximately) at 200 c.p.s.

The r.m.s. value of the exciting current was measured on a Solartron
True R.M.S. Voltmeter. using the same voltage signal as in Chapter VI to
monitor the exciting current. The spectral density of the current was measured
by passing the same voltage signal through a Muirhead L.F. Analyser, and
measuring the r.m.s. value of the resultant filtered output. The equivalent
pass-bandwidth of the analyser was 3% of the frequency setting. As the
analysing filter dii not possess by any means an ideal "steep-sided"
characteristic, the spectral density measurements may have been subject to
small errors.

VIII.3.2 The ExRerimrental Procedure for the Random Tests

Each specimen was tested in the same way at a temperature of 21.50C,
although some tests were conducted at temperatures closer to 240C. The

_$ exciting current was first adjusted to give- an r.m.s. voltage of 100 W' across
the "measuring resistance" in the circuit (see section VI.5.2). The rom.s.
voltage output from the reaction transducer was then recorded.

Also recordcd was the 'residual noise' output signal from the reaction
transducer which was present when no exciting current was flowing. This
derived principally from mains hum pick-up. Although its r.m.s. value was
found to be nearly 10% of the total reaction transducer output for some of
the specimens, the true signal due to the reaction force differed negligibly
from the measured total. This was due to the residual noise being altogeth-
unca-related writh the true reaction signal.

VIII.3.3 The Measurement of the S:ectrumn of the Exciting Current p
i•-- The voltage signal from the current measuring resis tance was passed

through the L.F. Analyse r vich was set in ýurn at a numnber of different
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frequencies over the range 20 - 700 c~p.s. The r.m.s. value of the output
from the analyser was measured on the r.m.s. voltmeter. The spectral density
was then given by the square of the indicated r.m.s. value * (0.03 x the
frequency setting).

The indicated r.m.s. voltage suffered from long-period fluctuations
which were an inevitable consequence of the narrow (3%) bandwidth of the
analyser and the finite integrating time of the voltmeter. Although the
integratIng time const~nt of the voltmeter was set to about 400 secs., ovar
longer periods than this the r.m.s. indication could vary by as much as
t 15% about a mean value. To estimate the mean value therefore involved a
"prolonged period of observation and recording for each frequency setting of the
analyser.

The measured spectrum is shown in Figure 58.

VIII.3.4 The -Determination of the Loading Distribution Function., 1 (z)

Since the same current flowed along the whole length of a specitvn,the corresponding loading at any point was proportional to the local magnetic

flux. To measure the distribution oý this flux along the specimen, a short
wire conductor, + in. long, was placed in the magnetic field in place of the
soecimen and the force exerted on it was measured when it carried a known
direct current. The force was measured with a cantilever beam on which a strain-
gauge bridge sensed the bending strains at the root. (The beam was originally
used aE a vibration displacement transducer). A force on the tip of the beam
produced a proportional out-of-balance voltage across the bridge which could
be measured an a galvanometer.

Accordingly, the wire conductor was fixed to the end of the beam and
placed in position in the magnetic field. A known- direct current was passed
through it and the galvanometer deflection was recorded. Readings were taken
with tho conductor at about forty different stations along the magnetic field.
The flux distribution, andhence • (y), is shown in Figure 59.

Absolute values of the force exerted were not deduced, as the distribution
function was only required in a non-dimensional form.

VIII.3.5 The Determination of the Relation.hiil between Loading and Current.
tReaction Force and Reaction Transducer Output

The instantaneous loading on the specimens was proportional to the
instantancoua current, -.nd hence also to the instantaneous value of the
volt-age, Vp(t), across the current measuring resistance. We may therefore
write:

Similarly, the instantaneous reaction force, L(t) , and the reaction
transducer output voltage, Vr(t) , may be related by
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Using k and kr in cc•junction with Equations 7.42 or 7.43, it is
seen that the m~an square value of the reaction transduce.r voltage is given by

(v) > kk, )Y (Vt xVFunction of X-, and ... 3)

The prediction of Vr2 therefore reqiares the product kz492;kr and k are
not required individu31y.

"The product krk Y was determined from a test on a lightly-damped,
solid aluminium specimeR TY6 SIQ mounted in the test rig and excited

-. rmonically at the resonant frequency of its second mode. Being lightly
damped (' = 0.002), the total force exerted on the support was virtually
eaual to tne inertia force alone. The amplitude of this is easily shown to be
given by

I.P() J0 iyn.~d jf()%y- _____

The amplitudes of the harmonic signals V P(t) and V r(t) under this resonant
condition wem- therefore related by

IVrI =v Y tjkc~kY 0013 I V.

or 14eky

Hence, the product was evaluated from measured values of lVrI and tVpI
at the resonant frequency of the aluminium specimen. The modal loss factor
of the specimen, N'n , was measured from the width of the frequency response
curve near resonance and was found to have the value 0.00176. The value of '3
wae found using f (y) = sin 21T)/b, together with the distribution functioa,

.(y), found ection VIII.3.4 above. These yielded'q = 1.34.

VIII.4 Details of the Theoretical Prediction of the Randora Reaction

The mean square voltage from the reaction transducer has been shown in
the last section to be given (theoretically) by:

< 2 ''V2
V- k2,. -k 13+ -1 .+nV X_+, ( -

which has been derived from Equation 7.42. For the mode and loading
distribution being considered, • has the value 1.3L (as in the last section).

lU4



The value of ,. has to be evaluated at th: frequency w.n corresponding to
the second mode of each specimen. These frequencies are taken from the results
of Chapter VI. The value of I_(Co.) required in )X has been taken from
the measured spectrum shown in Figure 58. The values of I found in Chapter
VI for the second modes have boen xsed.

In the evaluation of ZV_ 2>, it is of interest to compar•- the relative
magnitudes of its three component parts, viz. that part deriving from the force
exerted by the external loading, that part deriving directly from the modal
inertia forces, and that part deriving from the correlation between these two
forces. These parts are represented non-dimensionally within the large
bracket of Equation 8.6 by the unit term, the 15 2 term and the 2V term,
respectively. The values taken by each of these terms for the different
specimens are shcwn in Table VI , in ,hijh are also shova the values of
fn(= &3n2), Yn , and finaly Vr , i.e. (Vr)r.m . The values of
these latter quantities correspond to (Vpirms ý- 0.100 volts, at which value
the experiments were conducted.

VIII.5 Exoerimental and Theoretical Regglts

The measured and predicted values of the r.m.s. reaction transducer
output are shomn together in Table VI.

VIII.6 Dicuqssion of Results

Before comparing the -redicted and the experimental results it is worthy
of note that the values in set B of the experimental results are approximately
1.50 times those in set A. Set A were measured first and set i5 were measured
some time later after some of the apparatus had been calibrated. In the course
of the calibration the stability of some of the measuring apparatus was suspected.
It iS possible, therefore, that the values of set B vere measured after the
apparatus had drifted away frbm its calibrated state.

thseIf the value of set B are divided ýy 1.5, it can be seen that both

these and set A agree very well with the predicted values.

* If these factored set B values and the set A values are correct, the
validity and accuracy of the theoretical approa-& ara amply confirmed and
the assumptions on which the theory is based are justified - at least, when the
theory is applied to the particular specimens an, conditions of the tests.

Also justified by the agreement of the results is the use we have nmde
of the harmonically measured values of wn and n in predicting the
response. In Chapter VI (section VI.7.1) some discuission took place on the
effect of the frequency denencence of v and tt on the apparent values of
W aed vn measured from the vector response curves. It was concluded that
te effect was likely to be very small. Confirmation for this now comes from
the fact that the meastred -ilues of u and I n can be used to tredict
the random response quite accurately. c

The terms in Table VI which contribute to the total predicted response
show the relative importance of the correlation term (*C 29), the direct
inertia term (c r 2) and the term due to the external loading (the un., term).
With low damping (as for the Dynadamp specimen), the direct inertia term
predominates in the expected way, and the correlation and external loaeing
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terms are of little signficance. On the other kan" with high damping (as for
Oberst's specimen), all three terms are of similar magnitude and the exclusion
of any one of them cannot be justified.

That the correlation term should be negative in each ca-a follows from
the values of X being relatively small. In account of this, it can be shown
that the correlation effect derives mainly from the correlation of the frequency
components of the inertia force and excitation which lie above the natural
frequency. Speaking in terms of harmonic motion, these components are known
to be in anti-phase with each other, i.e. the correlation between them is
negative. The high frequency inertia force components then balance (or
"cancel out") the high frequency excitation components.

VIII.7 Comnarisons of the Sptecimens by the Random Reaction Force Criterion
and the Measured Force

In this section, by using the foregoing experimental results, we shall
investigate the validity of using the random reaction force criterion as a
basis for comparing the specimen under the given particular conditior.•.

Chapter III shows that the magnitudes of the criteria are inversely
proportional to the responses to which they relate, i.e. within the assumptions
that were stated, the response should be proportional to the reciprocal of
the criterion value. Hence, to test the validity of using the inertie force
criterion, the reciprocal of its values for each of the seven tested scecimens
should be compared with the measured values of the random reaction forces.
If the ratios of the two sets of values are consistent, the validity of the
criterion is demonstrated for the particular conditions under consideration.

In section 111.4.1, the random reaction force criterion was derived
and this is easily see.i to be proportional to r I e( 1)/wn] 1 . In this
expression the mass and stiffness ratios are inlu-1. i•mplicitly in Wn .
For the purpose of tLis section, these expressions have been evaluated as they
stand, using the measured values of w th and v for the second modes of the
different specimens. The reciprocals o? the vaines so obtained have then been
normalised, for convenience, to make the value for Oberst's specimen equal
to 1.0.

To -=ompare these values with the measured values, the same normalising
process has been applied to the measured values. They are all presented
in Table VII.

Exact agreement between the different rows of this table is not to be
expected, bearing in mind that the expression fcr the criterion was developed
after making certain assumptions which were not realized in the experiment
(e.g. a flat spectrum of excitation). It would be possible to give an improved
semblance of agreement by normalising the values such that another specimen
had the unit value. This is a detail which will not be pursued here. It can
be stated with confidence, however, that the use cf the criterion indicates
correctly the order (i.e. the wsequence") in which the "damping effectivenesses"
of the diffeiant specinens lie. The marginally different values for the
3M3 and 3M4 specimeis are the only exceptions to this.
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VIII.8 Conclusions drawn from Chapter VIII

Close agreement has been found to exist between the measured and
predicted values of the random reaction at the support of tt a damped sandw¶4ch
specimens. This apoears to confirm the theory of Cnapter VII and shows tin
particular) that even with high damping ( Y 0.9) we have been jus•f.•ed
in calculating the response on the assumption that there is 2 ttle or no
variation in the spectral density of the excitation in the region of tbc
system resonance.

The part of the random response deriving from the correlation between
the inertia force and the external loading has been found to be very significant
for the highly damped specimens but negligible for the more lightly damped
specimens, It appears to become significant when 7 is greater than about
0.15.

It has been found that the values of the resonant frequencies and
loss factors of the specimens measured by the methods of Chapter VI may be
used with confidence in the theory for predicting the random response.

The random reaetion force criterion has been found to be a reliable
guide o- the order (i.e. the sequence) of the effectivenesses of the different
sandwich specimens in damping rindom reaction forces,
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Chanter IX

General Conclusions

Detailed conclusions from the different stages of this report .-ave been
included at the end of most of the chapters (chapters I! and IV to VIII).
Only the most important conclusions will be reported here.

The study of the damping of reinforced plate structures (without any
damping treatment) has shown that the damping ratios may vary from 0.005 for
stringer torsion mordes of a large model to 0.011 for stringer bending modes
of a smaller model. Measurements made on full scale aeroplane structures
cannot yet be treated with much confidence, but the apoarent values of the
damping ratios were 0.014 to 0.02 for stringer torsion modes, or modes of
similar nature. Tnese values could be over-estimates of the true Nalues.
Acoustic radiation can yield damping ratios of up to 0.016 for some modes,
but for other modes it could yield nothing.

It nas next been shown that in order to judge the relative effective-
ness of different damping treatments and configurations, a comoarison of the
magnitudes of the loss factors of the configurations is generally insufficient.
Alternative criteria have therefore been derived, based on a number of
similifying assumptions relating to the system resoonse. These criteria
have then been used to compare two different unconstrained layer treatments,
It has thereby been shown that for some applications one treatment is
superior to the other, but for other applications this superiority is
reversed. According to some criteria there exists an optimam thickness of
damping treatment to minimise the response of a given plate, but according to
other criteria the response continually decreases with increase of treatment
thickness.

The theory of the respon.e of a two-dimensional flat sandwich plate
with a damped core has next been developed. The modal loss factors and
stiffnesses have been found to depend on the modal wavelength, as well as on
the core thickness and core d namic properties. Using the criteria, the
optimum core thicknesses and/or core properties have been found which
minimise the random and harmonic response of the plate. For a sarndw'ich
plate of given total weight, the minimum plate response is obtained when the
core is about five times as thick as one of the face-plates, but the static
stiffness of such a plate is much lower than that cf a solid plate of the
same weight; this may not be important in areas of an aeroplane structure which
are designed primarily from acoustic fatigue considerations.

If the solid skin plating of a real aeroplane structure is replaced
by a sandwich plate having a thick core of optimum properties, a rough
estiratp suggests that the r.m.s. stresses and reaction forces due to random
excitation will be reduced by no more thn 90%. Tf the sandwich plate has a
thin core, the reduction is no more than 60-70%.

Comparing the criterion values for the sandwich plates of optimum.
design with those of the plate treated with an umconst:ained layer indicates
that the sandwich damping mechanism is more effective all ro,.ud in reducifng
random or harmonic respo!nse. In particular, if the treatn-ent weight is 50"
of the weight of the metal plate(s) and for the sendwich core is 1.0,
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the random stress and reaction force criterion values for the sandwich are
about twice those for the oTher treated plate. i.e. the response is about
one half.

The theory for the zandwich plate loss fet-tor and model stiffness has
been partially confirmed by the results of harmozxi specimens on small
sandwich specimens. The special apparatus ttht had to be designed and the
techniques of measurements that bad to be developed have proved to be
satisfactory, for conducting asese .nmt tests on different damping treatments
and configurations.

The theoretical study of the nw-dom vibratlon of a heavily damped beam
has disclosed the importance in calcuUlairg its xesponse of alLowing for the
response component derivinZ.g f•em the correlvtion between the external loading
and the inertia forces exelted by it. ThiU term can be ignored, however, if
the loss factor of the system is le~i than 0bout 0.15.

In an experimental investigation, of the random response of heavily
damped beams, close agreement vas found to exist between the xesponse
predicted by the tbeory ano the measured values. Besides confirming the
general validity of the theoryx, this .1.so showed that values of the loss
factors and resonant frequencieg measured in the harmonic tests could be used
with confidence to predict tae random reoponse. For the particular specimens
and conditions of test, the random reaction force criterion was found to be a
reliable guide to the relative effectiveness of the different specimens in
attenuating the random reaction force.

Further work in this field of damping studies should deal with thc
damping and stiffness of zsndvich plates with boundary conditions othe, than
the simple supoorts dealt with in this repcort. The one-dimensional,
_ ily-f-tied -andwich plate should be amenable to exact theoretical treatment,
but a oroximate methods will probably be required for plates r-tinforced by
flexible stiffeners. Systematic experimental studies of the harmonic
and random vibration of stiffened damped plates wil also be required.
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r Specimen Hyeadamp Tynadamp Oberst's 3M' ]
Fathicepate in. 0.0188 0.0388 0.025 0.0348

Core thickness 1.72 0.204 2.90 0.055 , 0.117
ratio, "t 0.166 , 0.222

Width, in 0.30 0.30 0.30 0,30

Length between 10.54 IO. 54 10.54 10. 54
supports, in.
lb.9. 10n. l.• 0. j
Face-plate E, 9.70 10.95 10. 10.25
1 b. in-2. Y-O xlO xlO xlO0

Table III Dimensions and E's of Specimens

Frequency

Temoerature C 30 100 300 1000:

0 G 224 ;,92 990 2170
0 C 1.28 1.11 1._0 0.97

S23oC G 32 58 103 216
1.13 1.30 1.37 1.25

Table IV Maker's Data oil 3M's Adhesive Damping Fiim
(G is in 3b.in- 2 units)
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Specimen Mode No. Frequency

1 56 0-074 4.59
2 2.92 0.20 3.32

HYCADAMP 3 374 0.34 2.39
4 582 0.42 1.78
5 832 0.53 1.43

1 76 0.048 1.66
2 272 0.041 1.34

DYNADAMP 3 533 0.052 1.01
4 830 0.057 0.78
5 1180 0.060 0.64

1 60 o.55 2.99
2 178 0.86 1.42"

OBERST 3 322 0.97 0.87
" 487 0.95 0.63

_5 690 0.88 0.54

1 55 0.16 0.94
2 199 0,31 0.78

3MI 3 425 0.31 o.67
4 700 0.33 0.57
S1056 0.31 0.53

- - - T 6 .8 71 53 o0.28 08
2 193 0.40 o.69

3M2 3 386 0.43 0.524 664 0.44 0.51
5 975 c./4,4 0.44

1 51 0.39 0.79
2 175 0.52 0.55

3143 3 374 0.45 0.51
4 618 0.42 0.43

1 53 0.40 0.86
2 185 O.5U 0.64

3M14 3 390 0.52 0.54
4 605 0.50 o.46
5 935 0.44 0.42

Table V Valves of f (%/27r), l and from experiments
on the Sandw-ch Specimens
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__________________ ______- *���1 ________

Specimen Oberst Dyna.. HYCa>.j 314). 3}�2 3143 3�i4
Criteri.or'. I I I
RaciProeeis 1.0 5.25 2.04 1,70 1.49 j 2.21. 1 1.27
Small Damping

Criterion
Reciprocal 1.0 5.9 2.22 1.85 1.61 1.31 1.35
Large De�iping

Nermalised
Response, 1.0 4.62 1.h2 1.64 1.29 - 1.15

*SetA - 1
I I

Normalised Reeip�oca1s ..iiLl ________ _______ L i
I Response, 1 1.0 14.2 1.8 1.3 L23 1.20
Set B ___ ___ ___ ___ ___

_

Table VII Comparison of Normalised Values of Measured Response w,.th
Normalised Criterion
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which zinimise the response. Random stresses in a structure with thick-
cored sandwich plating have been estimated to be not less than 10% of
those in a solid-plate structure of equal weight.

Harmonic experiments on small sandwich specimens have confirmed the
theory for the loss factor and stiffness. The special apparatus and
techniques of measurement developed for the experiment have been used to
assess three commercial sandwich specimens.

A new approach has been initiated to estimate the random response
of a very heavily damped aystem. Its vdlidity has been confirmed for
simple random excitation conditions by experiments on the sandwich
specimens.


